

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Porous Zone	Hydraulics						
Course Code	ZTY613		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 6	Workload	150 (Hours)	Theory	2	Practice	2	Laboratory	0
Objectives of the Course Teaching the flow of w			n porous me	edia				
Course Content Teaching the flow of wa		flow of water i	n porous me	edia				
Work Placement N/A								
Planned Learning Activities and Teaching Methods Explanation (Presentation), Discussion, Individual Study, Problem Solving								
Name of Lecturer(s)								

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	40				
Final Examination	1	60				

Recommended or Required Reading

1 Flow and Transport in Fractured Porous Media Peter Dietrich, Rainer Helmig, Martin Sauter, and Heinz Hötzl

Week	Weekly Detailed Course Contents						
1	Theoretical	Specification of porous media and liquids					
2	Theoretical	Statics of fluids in porous media, physical and mathematical theory of the flow					
3	Theoretical	Steady and unsteady laminar flow of liquids					
4	Theoretical	Solution of the initial and boundary value problems					
6	Theoretical	Pressurized flow and Dupuit assumptions					
7	Theoretical	Groundwater flow					
8	Intermediate Exam	MIDTERM EXAM					
9	Theoretical	Groundwater storage and data					
10	Theoretical	Discovery of groundwater					
11	Theoretical	Well hydraulics and pumping tests					
12	Theoretical	Analysis of flow network					
13	Theoretical	Groundwater level and changes, salty water intrusion					
14	Theoretical	Plant-water relations in porous media					
15	Theoretical	FINAL EXAM					

Quantity	Quantity Preparation		Total Workload				
14	3	2	70				
14	2	2	56				
xamination 1		2	10				
1	12	2	14				
Total Workload (Hours)							
[Total Workload (Hours) / 25*] = ECTS							
*25 hour workload is accepted as 1 ECTS							
	14	14 3 14 2 1 8 1 12	14 3 2 14 2 2 1 8 2 1 12 2 Total Workload (Hours)				

Learn	ing Outcomes		
1	Relations between the groundwater and geology		
2	The flow of water in porous media		
3	The physical and hdraulic properties of aquifers		
4	Steady and unstady flow in aquifers and regional groundwater flow		

underground investigation techniques and engineering works related to groundwater resources

Prog	Programme Outcomes (Agricultural Structures and Irrigation Doctorate)					
1	Ability to analyze, synthesize and evaluate different forms of scientific knowledge in the field of studies					
2	Approach to information systematically, and gain skills related to their field the research methods					
3	Innovative science to develop a scientific method or a method that is known to practice in their field					
4	Ability to organize and manage the project and advanced scientific research					
5	Advanced technologies, find solutions to engineering problems taking advantage of the software and model approaches					
6	Creative, unbiased and critical thinking					
7	A topic in the field of written, verbally and visually as the ability to express					
8	Ability to publish in refereed journals National and international the results of studies					

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	5	5	5	5	5
P3	5	4	5	5	5
P4	4	2	4	4	4
P5	4	4	4	4	4
P6	4	5	3	3	4
P7	3	2	3	3	3
P8	3	3	3	3 (3

