

AYDIN ADNAN MENDERES UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES FIELD CROPS FIELD CROPS FIELD CROPS MASTER COURSE INFORMATION FORM

Course Title		Quantatif Genetic								
Course Code		ZTB502		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit	8	Workload	200 (Hours)	Theory		3	Practice	0	Laboratory	0
Objectives of the Course		To determine basics of thes	the properties e characters.	of basic	chara	acteristics	affected by m	ultiply genes.	To examine the	theoretical
Course Content		Learn basic ki breeding.	nowledge on g	jenotypic	c struc	cture of hy	brid population	ns and biomet	tric methods usir	ng in plant
Work Placement		N/A								
Planned Learning Activities		and Teaching	Methods	Explana Study, F	ation (Proble	Presentat	ion), Discussio 9	on, Project Ba	sed Study, Indiv	idual
Name of Lecturer(s)										

Assessment	Methods	and	Criteria
------------	---------	-----	----------

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	60	

Recommended or Required Reading

1	1. Wricke, G. 1972. Populationsgenetik.		
2	2. Falconer, D.S. 1970. Introduction to quantitative Genetics		
3	3. Demir, İ. 1990. Genel Bitki Islahı. Ege Üniversitesi Basımevi, İzr	nir	

Week	Weekly Detailed Cours	se Contents			
1	Theoretical	Continues variations and its causes			
	Preparation Work	Literature review			
2	Theoretical	Values and population means			
	Preparation Work	Literature review			
3	Theoretical	Population variances			
	Preparation Work	Literature review			
4	Theoretical	Components of variances			
	Preparation Work	Literature review			
5	Theoretical	The estimation of variance components			
	Preparation Work	Literature review			
6	Theoretical	The ratio of variances components and the importance in terms of breeding			
	Preparation Work	Literature review			
7	Preparation Work	Literature review			
8	Intermediate Exam	Midterm Exam			
9	Preparation Work	Literature review			
10	Theoretical	Heritability degrees			
	Preparation Work	Literature review			
11	Theoretical	The importance of heritability degrees in plant breeding and the methods of its calculations			
	Preparation Work	Literature review			
12	Theoretical	Selection and inbreeding I			
	Preparation Work	Literature review			
13	Theoretical	Selection and inbreeding II			
	Preparation Work	Literature review			
14	Theoretical	Heterosis			
	Preparation Work	Literature review			
15	Theoretical	Presentation of assignments			

15	Preparation Work	Literature review	
16	Final Exam	Final Exam	

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	3	3	84		
Assignment 2		13	20	66		
Midterm Examination	1	0	10	10		
Final Examination	1	10	30	40		
Total Workload (Hours)			200			
[Total Workload (Hours) / 25*] = ECTS			8			
*25 hour workload is accounted as 1 ECTS						

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

	J • • • • • • • • • • • • • • • • • • •
1	1. To be able to comprehend the applications and methods on plant breeding populations
2	2. To be able to analyse the genotypic structure of hybrid population according to its reproduction biology
3	3.To be able to form selection methods to improve cultivars in a breeding program
4	4. To be able to comprehend which breeding method will be used for quantitative characters in cultivar improvement
5	The genetic composition of the population can be changed positively by selection

Programme Outcomes (Field Crops Master)

1	To be able to improve and deepen the level of expertise in field crops on the basis of the departments licenses qualifications.
2	To be able to recognize the subjects related to field crops, to be able to solve these and make interpretation.
3	To be able to have the skills of acting independently, to have power to decide and to create.
4	To be able to work in teams between departments
5	To be able to give briefing about latest information of Field Crops in written, oral and visual ways.
6	To be able to take responsibility for developing the new approaches and to formulate a solution facing unforeseen complex situations of applications,
7	To be able to defend the original opinions in both Turkish and in foreign languages by using these languages and communicating effectively.
8	To be able to contribute to science by producing knowledge for the aim of improving quality, efficiency and sustainability
9	To be able to apply breeding methods in order to improve new varieties for Field Crops.
10	To be able to maintain and select the appropriate statistical methods within the framework of the study, evaluation of scientific ethics; to convert the results into a report/dissertation and to offer them by producing scientific publications.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	5	4	5
P2	5	4	4	5	5
P3	3	2	2	2	5
P4	4	3	3		5
P5	3	2	2	2	5
P6	2	2	2	2	5
P7	3	3	3	3	5
P8	3	2	2	2	5
P9	5	5	5	5	5
P10	5	4	4	5	5

