

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Micronutrients in Ag		griculture					
Course Code	ZTO614	Couse	Level	Third Cycle (Doctorate Degree)			
ECTS Credit 7	Workload 172	2 (Hours) Theory	/ 2	Practice	2	Laboratory	0
Objectives of the Course The objecti molybdenu fertilizer ap		is course is to gi s in soil and plan ns.	ve basic informa t, availability of t	tions on iron, i them in soil, int	manganase, z terpretation of	inc, copper, boro soil and plant tes	n and sts,
Course Content	Theoretical and practical course will be given on iron, manganase, zinc, copper, boron and molybdenum forms in soil and plant, availability of them in soil, interpretation of soil and plant tests, fertilizer applications.						
Work Placement	N/A						
Planned Learning Activities and Teaching Methods		nods Explan Study,	nation (Presenta Problem Solvin	tion), Experime g	ent, Discussio	n, Case Study, Ir	ndividual
Name of Lecturer(s)							

Assessment Methods and Criteria

Midterm Examination 1 40	Method	Quantity	Percentage (%)
Final Examination 1 60	Midterm Examination	1	40
	Final Examination	1	60

Recommended or Required Reading

1	Micronutrient Deficiencies in Global Crop Production. 2008. B. J. Alloway. Springer
2	Plant Micronutrients. 2006. C. P. Sharma. Science Publishers, Enfield, USA.
3	Micronutrients. 1983. J. C. Katyal and N. S. Randhawa, FAO.
4	Nutritional Disorders of Plants. 1992. W. Bergman. Gustav Fischer, New York.

Week	Weekly Detailed Course	rse Contents		
1	Theoretical	Iron in plant and soil		
	Preparation Work	Literature research		
2	Theoretical	Soil and plant test for iron and fertilization		
	Preparation Work	Determination of homework		
3	Theoretical	Effect of iron applications on yield and quality		
	Preparation Work	Presentation and discussion		
4	Theoretical	Manganese in plant and soil		
	Preparation Work	Presentation and discussion		
5	Theoretical	Soil and plant test for manganese and fertilization		
	Preparation Work	Presentation and discussion		
6	Theoretical	Effect of manganese applications on yield and quality		
	Preparation Work	Presentation and discussion		
7	Theoretical	Zinc in plant and soil		
	Preparation Work	Presentation and discussion		
8	Intermediate Exam	Midterm Exam		
9	Theoretical	Soil and plant test for zinc and fertilization		
	Preparation Work	Presentation and discussion		
10	Theoretical	Effect of zinc applications on yield and quality		
	Preparation Work	Presentation and discussion		
11	Theoretical	Copper in plant and soil		
	Preparation Work	Presentation and discussion		
12	Theoretical	Soil and plant test for copper and fertilization		
	Preparation Work	Presentation and discussion		
13	Theoretical	Boron in plant and soil		
	Preparation Work	Presentation and discussion		

14	Theoretical	Soil and plant test for boron and fertilization	
	Preparation Work	Presentation and discussion	
15	Theoretical	Boron toxicity	
	Preparation Work	Seasonal project	
16	Final Exam	Final Exam	

Workload Calculation

Activity	Quantity Preparation Duration		Total Workload	
Lecture - Theory	e - Theory 14		2	28
Lecture - Practice	14	0	2	28
Seminar	1	0	20	20
Term Project	1	0	16	16
Midterm Examination	1	0	30	30
Final Examination	1	0	50	50
	172			
[Total Workload (Hours) / 25*] = ECTS				

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

1	Micronutrient cycling in soil
2	Functions of micronutrient in plant
3	Evaluation of micronutrient fertilizer applications
4	Determination of micronutrients in soil
5	Determination of micronutrients in plant
Progra	amme Outcomes (Soil Doctorate)

Programme Outcomes (Soil Doctorate)

1	To be able to apply the theoretical information achieved during the graduate study
2	To be able to collect data by scientific means, to evaluate and interpret
3	To be able to update himself continuously
4	To be able to assess the convenient analytical methods during the process of the scientific study
5	To be able to put forth solutions to soil use and plant development

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	3	5	3	3
P2	5	4	5	1	1
P3	5	4	5	1	1
P4	5	4	5	1	1
P5	4	4	5	2	2

