

## AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                     |         | Equipments Used in Laboratory and Methods                                                                                                                                                                                                                                                    |             |             |   |                                |   |            |   |
|--------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|---|--------------------------------|---|------------|---|
| Course Code                                      |         | VBY529                                                                                                                                                                                                                                                                                       |             | Couse Level |   | Second Cycle (Master's Degree) |   |            |   |
| ECTS Credit                                      | 4       | Workload                                                                                                                                                                                                                                                                                     | 105 (Hours) | Theory      | 1 | Practice                       | 2 | Laboratory | 0 |
| Objectives of the Course                         |         | Biochemistry laboratory equipment and methods used to introduce and about them to make applications.                                                                                                                                                                                         |             |             |   |                                |   |            |   |
| Course Content                                   |         | Biochemical methods, pre-treatment for biological materials, Spectrometry, AAS, flame photometry, fluorometry, RIA, ELISA, HPLC, thin layer chromatography,, GC, GC-MS, lectin affinity chromatography, Introduction of ICP-AES and ICP-MS methods and make to applications in laboratories. |             |             |   |                                |   |            |   |
| Work Placement                                   |         | N/A                                                                                                                                                                                                                                                                                          |             |             |   |                                |   |            |   |
| Planned Learning Activities and Teaching Methods |         | Explanation (Presentation), Experiment, Individual Study                                                                                                                                                                                                                                     |             |             |   |                                |   |            |   |
| Name of Lectu                                    | urer(s) |                                                                                                                                                                                                                                                                                              |             |             |   |                                |   |            |   |

| Assessment Methods and Criteria |          |                |  |  |
|---------------------------------|----------|----------------|--|--|
| Method                          | Quantity | Percentage (%) |  |  |
| Final Examination               | 1        | 100            |  |  |

| Reco | Recommended or Required Reading                                                               |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1    | Karagül H., Altıntaş A., Fidancı U.R., Sel T.(2000) Klinik Biyokimya. Medisan Yayınevi ANKARA |  |  |  |  |  |  |
| 2    | Kaplan L.A. Pesce A.J. KAzmierczak S.C. Clinical chemistry, Mosby, U.S.A.                     |  |  |  |  |  |  |

| Week | Weekly Detailed Course Contents |                                                    |  |  |  |  |  |
|------|---------------------------------|----------------------------------------------------|--|--|--|--|--|
| 1    | Theoretical                     | Biochemical classification of methods              |  |  |  |  |  |
|      | Practice                        | Rules need to be aware of when using devices       |  |  |  |  |  |
| 2    | Theoretical                     | Süzme, santrfüj, diyaliz uygulamaları              |  |  |  |  |  |
|      | Practice                        | Filtration, centrifugation, dialysis applications  |  |  |  |  |  |
| 3    | Theoretical                     | Spectrophotometry                                  |  |  |  |  |  |
|      | Practice                        | Adsorption, and microdiffusion applications        |  |  |  |  |  |
| 4    | Theoretical                     | Atomic absorption Spectrophotometry (AAS)          |  |  |  |  |  |
|      | Practice                        | Enzymatic analysis in spectrophotometer            |  |  |  |  |  |
| 5    | Theoretical                     | Flame photometry                                   |  |  |  |  |  |
|      | Practice                        | Colorimetric analysis in spectrophotometer         |  |  |  |  |  |
| 6    | Theoretical                     | Fluorometry                                        |  |  |  |  |  |
|      | Practice                        | Video display for AAS                              |  |  |  |  |  |
| 7    | Practice                        | Video display for RIA                              |  |  |  |  |  |
| 8    | Intermediate Exam               | Midterm exam                                       |  |  |  |  |  |
| 9    | Theoretical                     | ELISA                                              |  |  |  |  |  |
|      | Practice                        | Hormones analysis with ELISA                       |  |  |  |  |  |
| 10   | Practice                        | Video display for HPLC                             |  |  |  |  |  |
| 11   | Theoretical                     | Thin-layer chromatography                          |  |  |  |  |  |
|      | Practice                        | Thin-layer chromatography applications             |  |  |  |  |  |
| 12   | Theoretical                     | Gas chromatography (GC)                            |  |  |  |  |  |
|      | Practice                        | Evalution of chromatographic methods               |  |  |  |  |  |
| 13   | Theoretical                     | Gas chromatography (GC)- mass spectrometry (GC-MS) |  |  |  |  |  |
|      | Practice                        | Introduction of GC-MS                              |  |  |  |  |  |
| 14   | Theoretical                     | Lectin affinity chromatography                     |  |  |  |  |  |
|      | Practice                        | Lectin affinity chromatography applications        |  |  |  |  |  |
| 15   | Theoretical                     | ICP-AES and ICP-MS                                 |  |  |  |  |  |
|      | Practice                        | Mineral analysis of ICP                            |  |  |  |  |  |
| 16   | Final Exam                      | Final exam                                         |  |  |  |  |  |



| Workload Calculation                         |          |             |          |                |
|----------------------------------------------|----------|-------------|----------|----------------|
| Activity                                     | Quantity | Preparation | Duration | Total Workload |
| Lecture - Theory                             | 15       | 1           | 1        | 30             |
| Lecture - Practice                           | 15       | 2           | 2        | 60             |
| Quiz                                         | 1        | 1           | 0.5      | 1.5            |
| Midterm Examination                          | 1        | 7           | 1        | 8              |
| Final Examination                            | 1        | 5           | 1        | 6              |
| Total Workload (Hours)                       |          |             |          |                |
| [Total Workload (Hours) / 25*] = <b>ECTS</b> |          |             |          |                |
| *25 hour workload is accepted as 1 ECTS      |          |             |          |                |

| Learn | ing Outcomes                                                                                              |
|-------|-----------------------------------------------------------------------------------------------------------|
| 1     | To be able to comprehend and apply the preparatory pre-processing for the biological materials.           |
| 2     | To be able to recognize the devices used in the laboratory of Biochemistry                                |
| 3     | Have knowledge about chromatographic systems                                                              |
| 4     | To learn about the working principles of the devices and to learn the points to be considered in practice |
|       | To be able to evaluate the advantages and disadvantages of different devices and methods                  |

| 5     | To be able to evaluate the advantages and disadvantages of different devices and methods                                                                                                                                                                                           |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|       |                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Progr | ramme Outcomes (Biochemistry (Veterinary Medicine) Master)                                                                                                                                                                                                                         |  |  |  |  |  |
| 1     | To be able to tell and describe the interdisciplinary interaction with the associated fields.                                                                                                                                                                                      |  |  |  |  |  |
| 2     | To be able to express original ideas useing his/her higher education knowledge theoretically and practically information and to be able to creat original definations,products,methods improving and questioning these ideas.                                                      |  |  |  |  |  |
| 3     | To be able to manage a free research according to scientifical and metodological methods and be able to hypothetically and practically about his/her own field.                                                                                                                    |  |  |  |  |  |
| 4     | To be able to compose and interpret the information from different disciplines, and create solution suggestions and scientific information which can contribute to the solution process.                                                                                           |  |  |  |  |  |
| 5     | To be able to involves in professional organizations and institutions related with the educational background.                                                                                                                                                                     |  |  |  |  |  |
| 6     | To be able to take responsibility for individual and group work, and do the assignments in line with the skills.                                                                                                                                                                   |  |  |  |  |  |
| 7     | To be able to communicate with the professionals out of the field when it is necessary, and contribute to the solution as a team member.                                                                                                                                           |  |  |  |  |  |
| 8     | To be able to tell about the production and publishing methods of scientific information.                                                                                                                                                                                          |  |  |  |  |  |
| 9     | To be able to design the source and the type of information that is needed related with the field and chooses the activities that s/he wants to participate, by using his/her critical thinking abilities that is developed in the education.                                      |  |  |  |  |  |
| 10    | To be able to use technological devices both for professional and social purposes.                                                                                                                                                                                                 |  |  |  |  |  |
| 11    | To be able to compose and interpret any kind of data related with the field (field observations, produced scientific information etc.) and analyzes and interprets the results according to the aims of the research.                                                              |  |  |  |  |  |
| 12    | To be able to define the environmental health rules and apply them for prevention.                                                                                                                                                                                                 |  |  |  |  |  |
| 13    | To be able to apply the knowledge gained in professional level with the awareness of the needs of the region and the country, and develop a defense capability.                                                                                                                    |  |  |  |  |  |
| 14    | To be able to conceptualize the phenomena and the events related with the field; study scientific methods and techniques, interpret results; analyze and hypothesize methods in accordance with the results and design solution or treatment alternatives addressing the problems. |  |  |  |  |  |
| 15    | To be able to interpret the updates of information in the field by using all kinds of sources (scientific information, legislations etc.), and use when needed.                                                                                                                    |  |  |  |  |  |

## Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

|     | L1 | L2 | L3 | L4 | L5 |
|-----|----|----|----|----|----|
| P2  | 5  |    |    |    |    |
| P3  | 5  |    |    |    |    |
| P4  | 5  | 5  |    |    |    |
| P7  |    | 5  |    |    |    |
| P8  | 5  |    |    |    |    |
| P10 |    | 5  |    |    |    |
| P11 | 5  |    |    |    |    |
| P14 |    |    | 4  | 4  | 4  |

