

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Techniques of Protein Dena	aturation			
Course Code	VBY631	Couse Level	Third Cycle (Doctorate Degree)		
ECTS Credit 4	Workload 100 (Hours)	Theory 1	Practice 2	Laboratory 0	
Objectives of the Course To explain the principle of protein denaturation, teach the methods of denaturing,			ng,		
Course Content The principle of protein and salts of heavy meta		aturation, precipitation	of proteins by heat, alcohol,	acid, ammonium sulfate,	
Work Placement N/A					
Planned Learning Activities	and Teaching Methods	Explanation (Presenta	tion), Experiment, Demonst	ration, Individual Study	
Name of Lecturer(s)					

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	20	
Final Examination	1	60	
Quiz	2	10	
Assignment	2	10	

Recommended or Required Reading

	1	1-Klinik biyokimya (Yüregir, Güneş T.),
	2	2- Klinik biyokimya = clinical biochemistry for medical students(Laker, M. F.),
Γ	3	3-Klinik biyokimya analiz metodları (Adam, Bahattin)

Week	Weekly Detailed Co	urse Contents
1	Theoretical	Definition of proteins
	Practice	The introduction of laboratory equipment
2	Theoretical	Fuctions of protein
	Practice	The preparation of work plan
3	Theoretical	Chemical structure of proteins
	Practice	Preparation of tools and equipment
4	Theoretical	Simple proteins
	Practice	Precipitation with heat test proteins
5	Theoretical	Conjugated proteins
	Practice	Protein precipitation with sulphpsalisilic acid acid test
6	Theoretical	Derivative proteins
	Practice	Protein precipitation with concentrated nitric acid test
7	Theoretical	Structure and conformation of the protein molecules
	Practice	Protein precipitation with triclorasetic asit (TCA) test
8	Theoretical	Midterm exam
	Practice	Midterm evaluation
9	Theoretical	Denaturation of proteins and precipitation reactions
	Practice	Denaturation of proteins and precipitation reactions
10	Theoretical	Identification with the color reactions of proteins
	Practice	Identification of proteins by reaction assay ksantoprotein
11	Theoretical	Proteins, sorting resolutions
	Practice	Identification of proteins by the reaction of lead acetate test
12	Theoretical	Separating proteins by molecular size
	Practice	Identification of proteins by the reaction of lead acetate test
13	Theoretical	Separation of proteins by electrical charge
	Practice	Identification of proteins by reaction assay Sakagucchi

14	Theoretical	The amino-terminal amino acid of a protein or peptide Assays
	Practice	Determination of protein in the blood

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	0	1	14
Lecture - Practice	14	0	2	28
Assignment	2	5	1	12
Term Project	2	2	3	10
Quiz	2	5	1	12
Midterm Examination	1	8	1	9
Final Examination	1	14	1	15
	100			
	4			
*25 hour workload is accorded as 1 ECTS				

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

	•
1	Learn the structure of proteins
2	Learn the methods of protein denaturation
3	Gain the ability to analyze and make hypothesis
4	To learn the chemical properties of proteins
5	To learn the methods of precipitation of proteins
-	

Programme Outcomes (Biochemistry (Veterinary Medicine) Doctorate)

	······································
1	Has a deep and broad knowledge about the field and the interdisciplinary area related with the field through the achievements gained in undergraduate and professional levels.
2	Has the knowledge to create original ideas, analyze them and develop definition/product/diagnosis methods by using the knowledge gained in undergraduate and/or professional experience, when needed.
3	Is knowledgeable about theories and practices in methodological and scientific research methods to run an independent research.
4	Excels in the laboratory, clinical and similar fields by using the theoretical and practical information gained in former education, and has the ability to create solutions in related fields.
5	Designs and develops scientific methodology for the advanced level/newly defined/emerged problems about the field.
6	Excels in the known scientific methods in the field for the advanced level/ newly defined/emerged problems.
7	Designs unique researches and implements independently.
8	Analyzes, synthesizes and evaluates the new ideas in related fields by using critical thinking.
9	Plans, creates teams and carries out the interdisciplinary research projects in order to create solutions to the known/newly defined problems.
10	Joins to congresses, panels, symposiums, workshops, seminars, article discussions and problem solving sessions in different disciplines, and exchanges information with the other professionals to contribute to the solutions.
11	Broadens the borders of scientific information by publishing scientific articles in national and/or international peer-reviewed journals.
12	Creates new ideas and methods to contribute to the technological, social and cultural progress, or to help the development of information society by using the theoretical, practical, independent research, abilities responsibly.
13	Designs and implements social projects with the awareness of creating an information society.
14	Compiles and interprets any type of data (field observation, scientific knowledge etc.) in accordance with the aims.
15	Develops and uses strategies about related topics with the field.
16	Implements and defends institutional and practical information and abilities in accordance with the needs of the country and the world, and changes when necessary.
17	Follows up and uses all the updates about the field (scientific information, legislations etc.), and has the qualification to change them.
18	Adopts lifelong learning as a principle and acknowledges that the information gained through research is the most valuable gain.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5			5	5
P2	5				

P3	5				
P4		5	5	5	5
P5			4	4	4
P8	4				
P10			4	4	4
P12	5	5			
P18		3		3	3

