

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

This course will r	97 (Hours)	Couse Leve Theory		Second Cycle	e (Master's D	Degree)	
This course will r	()	Theory	2	Des etters			
			-	Practice	1	Laboratory	0
of physical proble						each modeling and	analysis
			s, modeling	and analysis o	of physical p	oroblems using high	ier level
N/A							
Planned Learning Activities and Teaching Methods		Explanation	n (Presentat	ion), Demonst	ration, Discu	ussion, Project Bas	ed Study
3	asic computer ommercial soft //A	asic computer programmin ommercial software packag /A	asic computer programming language ommercial software packages. /A	asic computer programming languages, modeling ommercial software packages. /A	asic computer programming languages, modeling and analysis o ommercial software packages. /A	ommercial software packages. /A	asic computer programming languages, modeling and analysis of physical problems using high ommercial software packages. /A

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	60	

Recommended or Required Reading

- 1 Related web sites
- 2 Related scientific articles

Week	Weekly Detailed Co	urse Contents			
1	Theoretical	Review of existing computer programing languages			
2	Theoretical	Review of existing computer programing languages			
3	Theoretical	Programming structure and Comments			
4	Theoretical	Programming structure and Comments			
5	Theoretical	Object-oriented programming			
6	Theoretical	Object-oriented programming			
7	Theoretical	Midterm			
8	Theoretical	Review of commercial software packages used for modeling and analysis			
9	Theoretical	Modeling and analysis of selected physical problems assigned to students			
10	Theoretical	Modeling and analysis of selected physical problems assigned to students			
11	Theoretical	Modeling and analysis of selected physical problems assigned to students			
12	Theoretical	Modeling and analysis of selected physical problems assigned to students			
13	Theoretical	Modeling and analysis of selected physical problems assigned to students			
14	Theoretical	Modeling and analysis of selected physical problems assigned to students			
15	Theoretical	Discussion			
16	Theoretical	Final exam			

Workload Calculation

Activity	Quantity	Preparation Duration		Total Workload
Lecture - Theory	14	1	2	42
Lecture - Practice	14	1	1	28
Assignment	1	10	1	11
Midterm Examination	1	6	2	8
Final Examination	1	6	2	8
	97			
	4			
*25 hour workload is accepted as 1 ECTS				

Learn	ning Outcomes
1	At the end of the course, students will be able to perform the modelling and mechanical, thermal and electromagnetic analysis of the properties of physical objects by the use of computer programming
2	To comprehend the usage of software programs in modelling and analysis
3	To be able to understand the existing computer programming languages
4	To gain knowledge on programming structure and its evaluation
5	To gain knowledge on object-oriented programming

Programme Outcomes (Biophysics Master)

Progr	amme Outcomes (Biophysics Master)
1	To be able to acquire an up-to-date theoritical and pratical background on biophysical and electrobiophysical research
2	To be able to acquire a background needed for basic biophysical research and having the ability to use the teoritical and practical knowledge in the field
3	To be able to attain the ability to get access to the up-to-date knowledge, interpret and improve the information in the field of biophysics
4	To be able to attain the ability to perform experimental methods in the field, produce new approaches and ability to produce analytical solutions to the problems faced during application of new methods
5	To be able to reach a level to follow research in the field, to possess written and spoken communication skills and be able to join discussions
6	To be able to acquire knowledge and skill to apply scientific principles of ethics.
7	To be able to gain knowledge and skill about the basic issues of electric and magnetic fields, the interaction of light with matter, spectroscopy, radiation biophysics such as radiation, electromagnetic spectrum, ionizing radiation and radioactivity; learn about the physical properties of these issues and to be able to evaluate biological effects of radiation on tissues
8	To be able to construct knowledge and skill about the molecular structure and function in living systems, bioenergetic concepts, information theory and the processing of information in living systems
9	To be able to master about the basic principles of bioelectrical incidents that ocur in cells, such as transport across membranes, electrical properties of membranes, resting membrane potential, and to be able to discuss the bioelectrical behaviour of excitable membranes
10	To be able to define the kinds, sources and biophysical properties of bioelectrical signals, to store knowledge in areas of biophysical concepts and characteristics such as nerve action potential and compound nerve action potential and to record to record these potential variants , analyze and evaluate the results
11	To be able to define basic biophysical principles of the visualization techniques used in medical field and the techniques used to determine biological signals, such as electromyigraphy (EMG), electroencephalography (EEG), and electrocardiography (ECG), and attain the ability to apply these techniques
12	To be able to attain knowledge on molecular biophysics and its basic principles
13	To be able to attain the ability to plan and conduct projects in the field of biophysics, and attain the ability to write and publish scientific results
14	To be able to acknowledge the national and international laws and regulations about the concepts related to biophysics
15	To be able to attain the skills to organize activities together with non-governmental organizations or to conduct collaborative projects with other disciplines
16	To be able to acquire the ability of critical thinking, making judjements and solving problems in the field of biophysics
17	To be able to able to use statistical, computational and communicational tools, which can be applied in the field of biophysics
18	To be able to use basic knowledge and skills of the field; be able to evaluate data, identify problems and propose solutions

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

JJ							
	L1	L2	L3	L4	L5		
P1	5	4	5	5	5		
P2	5	4	4	4	4		
P3	4	4	4	4	4		
P4	5	5	4	4	4		
P5	4	4	5	5	4		
P6	3	3	3	4	4		
P7	4	4	4	4	4		
P8	4	4	4	4	4		
P9	4	4	4	4	4		
P10	4	4	4	4	4		
P11	4	4	4	4	4		
P12	4	4	4	4	4		
P13	4	4	4	4	4		
P14	3	3	3	4	4		

P15	4	4	4	4	4
P16	3	3	3	4	4
P17	5	5	5	5	4
P18	5	5	5	5	4