

AYDIN ADNAN MENDERES UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES MATHEMATICS AND SCIENCE EDUCATION SCIENCE EDUCATION SCIENCE EDUCATION MASTER COURSE INFORMATION FORM

Course Title		Designing And Developing Science Experiments								
Course Code		İFB505		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit	8	Workload	200 (Hours)	lours) Theory 3		3	Practice	0	Laboratory	0
Objectives of the Course		Development	Development of designing science experiments and experiment development skills							
Course Content		Planning expe process skills	eriments and c	onduct	ting examp	lary e	xperiments in s	cience and de	eveloping scienti	fic
Work Placement		N/A								
Planned Learning Activities and Teaching		and Teaching	Methods	Explai	nation (Pre	sentat	tion), Experime	ent, Discussion	n, Individual Stud	dy
Name of Lecturer(s)		Prof. Nilgün Y	ENICE							

Assessment Methods and Criteria Method

Method	Quantity Percentag		6)
Midterm Examination	1	40	
Final Examination	1	60	

Recommended or Required Reading

1	Bahar, M. ve ark. (2008). Fen ve Teknoloji Laboratuar Uygulamaları
2	Özmen, H. ve Yiğit, N. (2005). Teoriden Uygulamaya Fen Bilgisi Öğretiminde Laboratuar Kullanımı
3	Şimşek, N. ve Çınar, Y.(2007). Fen ve Teknoloji Laboratuarı ve Uygulamaları
4	Akgün, Ş., (2000). Çevre İmkanları ile Basit Ders Araçları Yapımı

Week	Weekly Detailed Course Contents						
1	Theoretical	References for the lesson					
2	Theoretical	The importance of experiment in science education					
3	Theoretical	Scientific process skills					
4	Theoretical	Experiment method and its relation to teaching programs					
5	Theoretical	Preparing experiment study sheet					
6	Theoretical	Determining goals and objectives for the experiment					
7	Theoretical	Determination instruments for the experiment					
8	Intermediate Exam	Midterm					
9	Theoretical	Making materials of cheap and waste materials					
10	Theoretical	Making experiments and data gathering process					
11	Theoretical	Discussing the results and coming to conclusions period					
12	Theoretical	The idea of computer applied experiment design					
13	Theoretical	Sample experiment designs related to biological physical and chemical sciences					
14	Theoretical	Sample experiment designs related to biological physical and chemical sciences					
15	Theoretical	Sample experiment designs related to biological physical and chemical sciences					
16	Final Exam	Term					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	2	3	70
Assignment	5	10	0	50
Reading	5	9	0	45
Midterm Examination	1	10	2	12

Courses	una a li a va	E
		FOIII

Final Examination	1	20	3	23		
	Total Workload (Hours)			200		
		[Total Workload (Hours) / 25*] = ECTS	8		
*25 hour workload is accepted as 1 ECTS						

Learn	ing Outcomes			
1	To be able to comprehend the importance of science e	xpe	riments and learn experimental process.	
2	To be able to build physics, chemistry and biology expe	ərier	nces.	
3	Learn scientific process skills.			
4	Learn to prepare experiment sheet.			
5	Learn to make cheap and waste materials.			

Programme Outcomes (Science Education Master)

1	To be able to have an expert theoretical knowledge within the field of science education.					
2	To be able to transfer expert knowledge gained in science education into various instructional environment.					
3	To be able to integrate science education knowledge with the other disciplines and product functional knowledge					
4	To be able to use information and communication technologies efficiently in conceptual learning					
5	To be able to find scientific solutions to the problems in the field of science education					
6	To be able to evaluate the knowledge critically in the field					
7	To be able to participate in team projects in the science education field					
8	To be able to adopt lifelong learning strategies to his/her studies					
9	To be able to use at least one foreign language efficently in oral and verbal communication					
10	To be able to share national and international data in the field of science education					
11	To be able to comprehend and evaluate science-technology-society and environment interactions					
12	To be able to comprehends science under the ethical values and take account of ethical considerations					
13	To be able to use scientific information in the other domains that is gained in the masters field and have the transfer skills					
14	To be able to follow the current development in the science education field					
15	To be able to develop strategical plans and evaluate them in the context of quality processes					

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5				
P2		5	5	5	5
P3	3	4			
P4	4	4	5	5	5
P6	3	3	5	5	5
P7		3			
P8	3				
P13	2	2	5	5	5

