

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		General Chemistry I								
Course Code		İFB513		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit	8	Workload	200 (Hours)) Theory 3 Practice 0 Laboratory			Laboratory	0		
Objectives of the Course		Examine the behaviour of atoms and molecules.								
Course Content		Chemistry and properties of matter, atomic structure and atomic theory, chemical compounds, cher reactions in aqueous solution, reactions, gases,thermochemistry, atomic orbitals with the placemen electrons, the periodic table, chemical bonding, liquids, solids and intermolecular forces								
Work Placement		N/A								
Planned Learning Activities and Teaching Methods		Explan	atior	n (Presentat	tion), Discussi	on, Individua	l Study, Problem	Solving		
Name of Lecturer(s)										

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	40				
Final Examination	1	60				

Recommended or Required Reading					
1	Mortimer, C. E. 1993; Modern Üniversite Kimyası, Çağlayan Basımevi, İstanbul				
2	R.H.Petrucci, W.S.Harwood, F.G.Herring "General Chemistry Principles and Modern Applications", Prentice Hall 2002				
3	Atasoy, Basri. "Genel Kimya". Gündüz Eğitim ve Yayıncılık, Ankara, 2000				

Week	Weekly Detailed Course Contents						
1	Theoretical	Chemistry definition, scope, importance, influence our lives and a brief overview of the historic development of chemistry					
	Preparation Work						
2	Theoretical	Elektronic structure of the atom and atomic nucleus, protons, neutrons and electrons, atomic theories					
	Preparation Work						
3	Theoretical	Modern atom theory					
	Preparation Work						
4	Theoretical	Introduction to periodic table of chemical elements in the periodic classification and characteristics					
	Preparation Work						
5	Theoretical	Ionization energy, electronegativity, atomic size, electron affinity					
	Preparation Work						
6	Theoretical	Introduction of chemical bonds, Lewis formulas o0f molecules, formal charge					
	Preparation Work						
7	Preparation Work						
8	Intermediate Exam	MIDTERM					
9	Theoretical	Molecular geometry, Hybridization and hybrid orbitals					
	Preparation Work						
10	Theoretical	Dipole moment, Theories of Covalent Bonds, bond length, multiple bonds					
	Preparation Work						
11	Theoretical	Dipole moment, Theories of Covalent Bonds, bond length, multiple bonds					
	Preparation Work						
12	Theoretical	Chemical reactions and equations, reaction types					
	Preparation Work						
13	Theoretical	Oxidation-reduction reactions and balancing equations, mole and chemical calculations					
	Preparation Work						
14	Theoretical	Gases and their properties					
	Preparation Work						
15	Theoretical	Gases and their properties					

15	Preparation Work		
16	Final Exam	TERM	

Workload Calculation							
Activity	Quantity		Preparation	Duration	Total Workload		
Lecture - Theory	14		2	3	70		
Assignment	5		10	0	50		
Reading	5		9	0	45		
Midterm Examination	1		10	2	12		
Final Examination	1		20	3	23		
	200						
	8						
*25 hour workload is accepted as 1 ECTS							

Learn	ning Outcomes
1	To be able to understand the importance of science in chemistry.
2	To be able to define the concepts of atomic number, mass number and isotopes.
3	To be able to place the periodic table of elements and detect metals, nonmetals and semi-metals.
4	To be able to identify and calculate the energy associated with different types of energyreactions
5	To be able to understand the formation of chemical bonds and molecular geometry
6	To be able to acquire the properties of gases.

Progr	amme Outcomes (Science Education Master)
1	To be able to have an expert theoretical knowledge within the field of science education.
2	To be able to transfer expert knowledge gained in science education into various instructional environment.
3	To be able to integrate science education knowledge with the other disciplines and product functional knowledge
4	To be able to use information and communication technologies efficiently in conceptual learning
5	To be able to find scientific solutions to the problems in the field of science education
6	To be able to evaluate the knowledge critically in the field
7	To be able to participate in team projects in the science education field
8	To be able to adopt lifelong learning strategies to his/her studies
9	To be able to use at least one foreign language efficently in oral and verbal communication
10	To be able to share national and international data in the field of science education
11	To be able to comprehend and evaluate science-technology-society and environment interactions
12	To be able to comprehends science under the ethical values and take account of ethical considerations
13	To be able to use scientific information in the other domains that is gained in the masters field and have the transfer skills
14	To be able to follow the current development in the science education field
15	To be able to develop strategical plans and evaluate them in the context of quality processes

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5	L6
P1	5	5	5	5	5	5
P2	3	3	3	3	3	3
P6	3	3	3	4	3	4
P7	2		2			
P8	3	3	3	3	3	3
P14	4					

