

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		General Physics II										
Course Code		İFB518		Couse Level		Second Cycle (Master's Degree)						
ECTS Credit	8	Workload 200 (Hours)		Theory	,	3	Practice 0		Laboratory	0		
Objectives of	the Course	Understanding electric and magnetism topics										
Course Content		Electromagnetic universe, Electrical specifics of matter, Magnetical characteristics of matter										
Work Placement		N/A										
Planned Learning Activities and Teaching Methods				Explan Study,	ation Probl	(Presentat lem Solvin	tion), Experime g	ent, Discuss	ion, Case Study, I	ndividual		
Name of Lecti	urer(s)											

Assessment Methods and Criteria									
Method	Quantity	Percentage (%)							
Midterm Examination	1	40							
Final Examination	1	60							

Reco	Recommended or Required Reading									
1	Physics, SERWAY									
2	Principles of Physics									
3	Basic Physics									
4	Essential Physics									

Week	Weekly Detailed Course Contents									
1	Theoretical	Electromagnetic universe								
	Preparation Work	problem solving from Fizik, SERWAY								
2	Theoretical	Electromagnetic universe								
	Preparation Work	problem solving from Fizik, SERWAY								
3	Theoretical	Electrical specifics of matter								
	Preparation Work	problem solving from Fizik, SERWAY								
4	Theoretical	Electrical specifics of matter								
	Preparation Work	problem solving from Fizik, SERWAY								
5	Theoretical	Magnetical characteristics of matter								
	Preparation Work	problem solving from Fizik, SERWAY								
6	Theoretical	Magnetical characteristics of matter								
	Preparation Work	problem solving from Fizik, SERWAY								
7	Theoretical	Electromagnetic energy and dispersion								
	Preparation Work	problem solving from Fizik, SERWAY								
8	Preparation Work	problem solving from Fizik, SERWAY								
	Intermediate Exam	MIDTERM								
9	Theoretical	Electromagnetic energy and dispersion								
	Preparation Work	problem solving from Fizik, SERWAY								
10	Theoretical	Semiconductor materials and characteristics								
	Preparation Work	problem solving from Fizik, SERWAY								
11	Theoretical	Semiconductor materials and characteristics								
	Preparation Work	problem solving from Fizik, SERWAY								
12	Theoretical	Interaction of electromagnetic energy-matter								
	Preparation Work	problem solving from Fizik, SERWAY								
13	Theoretical	Interaction of electromagnetic energy-matter								
	Preparation Work	problem solving from Fizik, SERWAY								
14	Theoretical	Electrical-semiconductor sensors and their application field								
	Preparation Work	problem solving from Fizik, SERWAY								

15	Theoretical	Electrical-semiconductor sensors and their application field							
	Preparation Work	problem solving from Fizik, SERWAY							
16	Preparation Work	problem solving from Fizik, SERWAY							
	Final Exam	TERM							

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	4	3	98
Reading	10	4	3	70
Midterm Examination	1	10	3	13
Final Examination	1	15	4	19
	otal Workload (Hours)	200		
	8			
*25 hour workload is accepted as 1 ECTS				

Learn	ing Outcomes
1	To be able to solve electric and magnetism problems.
2	To be able to solve problems in electrostatics using Coulomb and Gauss laws and imagine basic electrical cherge distributions.
3	To be able to define and solve problems about electrical circuit and circuit elements.
4	To be able to define magnetic field occurring in a simple current distribution using Biot-Savart and Ampere's Laws.
5	To be able to define EMF caused by moving ring in a magnetic field.
6	To be able to describe the characteristics of different types of magnetic materials and solve magnetic cycle problems.
7	To be able to understand the impact of development of electric and magnetism field on science and technology and learn daily life applications of it.

Progr	amme Outcomes (Science Education Master)
1	To be able to have an expert theoretical knowledge within the field of science education.
2	To be able to transfer expert knowledge gained in science education into various instructional environment.
3	To be able to integrate science education knowledge with the other disciplines and product functional knowledge
4	To be able to use information and communication technologies efficiently in conceptual learning
5	To be able to find scientific solutions to the problems in the field of science education
6	To be able to evaluate the knowledge critically in the field
7	To be able to participate in team projects in the science education field
8	To be able to adopt lifelong learning strategies to his/her studies
9	To be able to use at least one foreign language efficently in oral and verbal communication
10	To be able to share national and international data in the field of science education
11	To be able to comprehend and evaluate science-technology-society and environment interactions
12	To be able to comprehends science under the ethical values and take account of ethical considerations
13	To be able to use scientific information in the other domains that is gained in the masters field and have the transfer skills
14	To be able to follow the current development in the science education field
15	To be able to develop strategical plans and evaluate them in the context of quality processes

Contri	Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High										ligh			
	L1	L2	L3	L4	L5	L6	L7							
P1	5	3	5	5	5	5	5							
P6	2	4	3	3	3	3	4							
P8	4	3	3	3	3	3	5							
P11							5							

