

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Ele		Electronic Applications in Mechanical Engineering							
Course Code		MME503		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	8	Workload 195 (Hours)		Theory	3	Practice	0	Laboratory	0
			provide the student with general mathematical techniques and basic solve advanced heat conduction problems						
Course Content		The conduction general rate equation. Multidimensional heat conduction. Heat transfer from extended surfaces. Multidimensional steady state heat conduction. Numerical methods on steady state heat conduction. Finite difference methods steady state conduction. Transient heat conduction. Laplace transformation methods. Numerical methods in Transient heat conduction							
Work Placement N/A									
Planned Learning Activities and Teaching Methods		Explanation Study, Prob			ion, Project l	Based Study, Indiv	idual		
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	15	
Final Examination		1	60
Quiz		4	15
Assignment		5	5
Term Assignment		1	5

Recommended or Required Reading

1	Yener, Y., Kakaç S., HeatConduction, 4th edition, Taylor & Francis, 2008.					
2	Özışık, M. N.,HeatConduction, 2nd edition, Wiley-Interscience, 1993.					
3	Jiji, M.L.,HeatConduction, 3rd edition, Springer, 2009.					

Week	Weekly Detailed Course Contents						
1	Theoretical	Foundations of heat transfer, general heat conduction equation					
2	Theoretical	One-dimensional steady heat conduction					
3	Theoretical	Orthogonal functions, Fourier expansions and finite Fourier transforms					
4	Theoretical	Orthogonal functions, Fourier expansions and finite Fourier transforms					
5	Theoretical	Steady Two-and Three dimensional heat conduction: solutions with separation of variables					
6	Theoretical	Steady Two-and Three dimensional heat conduction: solutions with separation of variables					
7	Theoretical	Unsteady heat conduction: solutions with separation of variables					
8	Intermediate Exam	Midterm Exam					
9	Theoretical	Unsteady heat conduction: solutions with separation of variables					
10	Theoretical	Solutions with integral transforms					
11	Theoretical	Solutions with integral transforms					
12	Theoretical	Numerical solutions					
13	Theoretical	Numerical solutions					
14	Theoretical	Further methods of solution					
15	Theoretical	Further methods of solution					
16	Final Exam	Final Exam					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	16	2	4	96
Assignment	5	0	3	15
Term Project	1	15	10	25
Quiz	4	4	1	20

	antina	E
		FOIII

Midterm Examination	1		15	2	17	
Final Examination	1 20		2	22		
Total Workload (Hours)						
[Total Workload (Hours) / 25*] = ECTS 8						
*25 hour workload is accepted as 1 ECTS						

Learr	ning Outcomes		
1	Ability to compute the heat conduction		
2	Ability to generate boundary conditions		
3	Ability to use solution methods of heat conduction m	echani	sms
4	Ability to use variables separate method		
5	Ability to compute numerical heat conduction		
6	Ability to use 2D and 3D modeling technics		

Programme Outcomes (Mechanical Engineering (English) Master)

1	To be able to access wide and deep information with scientific researches in the field of Engineering, evaluate, interpret and implement the knowledge gained in his/her field of study
2	To be able to complete and implement "limited or incomplete data" by using the scientific methods
3	To be able to consolidate engineering problems, develop proper method(s) to solve and apply the innovative solutions to them
4	To be able to develop new and original ideas and method(s), to develop new innovative solutions at design of system, component or process
5	To be able to gain comprehensive information on modern techniques, methods and their borders which are being applied to engineering
6	To be able to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process
7	To be able to gain high level ability to define the required information and data
8	To be able to work in multi-disciplinary teams and to take responsibility to define approaches for complex situations
9	To be able to transfer of the process and results of studies at national and international environments systematic and clear verbal or written
10	To be able to be aware of social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, and announcement
11	To be able to become aware of new and developing application of profession and ability to analyze and study on those applications
12	To be able to interpret engineering application's social and environmental dimensions and it's compliance with the social environment

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6
P1	4	4	4	4	4	2
P2	3	3	4	4	4	2
P3	5	5	5	5	4	4
P4	3	3	5	3	3	3
P5	4	4	3	3	3	3
P6	4	4	4	5	4	4
P7	5	4	4	4	4	4
P8	4	4	3	4	3	4
P9	4	3	5	3	4	4
P10	3	4	5	4	4	5
P11	4	5	5	5	5	5
P12	3	4	5	5	3	3

