

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Elementary Nanotechnology and Nanometrology							
Course Code		MME517		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	8	Workload	195 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		The aim of this course is to inform students about nanotechnology and nanometrology							
Course Content		In this course, new methods in the field of nanotechnology will be studied on.							
Work Placement		N/A							
Planned Learning Activities and Teaching Methods			Explanation Based Stud	(Presenta y, Individua	tion), Experime al Study	ent, Discuss	ion, Case Study, I	Project	
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	15	
Final Examination	1	60	
Quiz	4	15	
Assignment	5	5	
Term Assignment	1	5	

Recommended or Required Reading

1	Charles P. Poole Jr., Frank J. Owens, "Introduction to Nanotechnology", Wiley
2	Whitehouse D.J., "Handbook of Surface and Nanometrology", Institute of Physics, Bristol, (published in 1994), 2003, ISBN: 0
3	Taniguchi N.: On the basic concept of nanotechnology In: Proc. Int. Conf. Prod. Eng. Tokyo, 1974, part 2, Tokyo: JSP4, 18
4	Whitehouse D.J.: Nanotechnology instrumentation. – Measurement + Control, 24 1991, No 2, 37
5	Binnig H., Rohrer H.: Scanning tunneling microscopy. – Helv. Phys. Acta, 55, 1982, 726

Week	Weekly Detailed Course Contents					
1	Theoretical	Workpiece accuracy and technical product specification				
2	Theoretical	Metrology in precision engineering				
3	Theoretical	Development and state-of-the-art in precision engineering				
4	Theoretical	Precision machining production techniques				
5	Theoretical	Precision machining production techniques				
6	Theoretical	Precision machining limits and measurement sensitivities				
7	Theoretical	Developments and requirements on instrumentation in nanotechnology				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	Instrumentation in nanotechnology				
10	Theoretical	Stylus Contact Instruments and Optical Methods				
11	Theoretical	Stylus Contact Instruments and Optical Methods				
12	Theoretical	Scanning tunneling and atomic force microscopy				
13	Theoretical	Building things with atoms				
14	Theoretical	One atom-at-a-time construction of things				
15	Theoretical	Atom manipulation				
16	Final Exam	Final Exam				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	16	2	4	96
Assignment	5	0	3	15
Term Project	1	15	10	25
Quiz	4	4	1	20
Midterm Examination	1	15	2	17

				Course Information Form
Final Examination	1	20	2	22
	195			
		[Total Workload (Hours) / 25*] = ECTS	8
*25 hour workload is accepted as 1 ECTS				

Learning Outcomes

Lean	ing Outcomes
1	To be able to acquire the Nanotechnology
2	To be able to acquire Nanometrology
3	To be able to learn the importance for present and future of nanotechnology
4	To be able to learn the application fields of nanotechnology
5	To be able to understand the effects of nanotechnology on the future of life.

Programme Outcomes (Mechanical Engineering (English) Master)

· · • 9.	
1	To be able to access wide and deep information with scientific researches in the field of Engineering, evaluate, interpret and implement the knowledge gained in his/her field of study
2	To be able to complete and implement "limited or incomplete data" by using the scientific methods
3	To be able to consolidate engineering problems, develop proper method(s) to solve and apply the innovative solutions to them
4	To be able to develop new and original ideas and method(s), to develop new innovative solutions at design of system, component or process
5	To be able to gain comprehensive information on modern techniques, methods and their borders which are being applied to engineering
6	To be able to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process
7	To be able to gain high level ability to define the required information and data
8	To be able to work in multi-disciplinary teams and to take responsibility to define approaches for complex situations
9	To be able to transfer of the process and results of studies at national and international environments systematic and clear verbal or written
10	To be able to be aware of social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, and announcement
11	To be able to become aware of new and developing application of profession and ability to analyze and study on those applications
12	To be able to interpret engineering application's social and environmental dimensions and it's compliance with the social environment

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	5	3	5	3
P2	4	4	3	4	3
P3	4	5	5	5	3
P4	3	4	5	4	3
P5	5	3	5	4	4
P6	4	5	4	4	3
P7	3	4	3	5	4
P8	4	3	5	5	3
P9	3	5	5	4	3
P10	5	5	5	4	4
P11	4	4	4	4	3
P12	4	5	3	5	3

