

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	A Holistic Aprproach of Factory Organisation							
Course Code	Code MME524		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8	Workload	195 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course To instruct the students analytical solutions and real life applications of ordinary and partial differenti equations in Mechanical Engineering					erential			
Course Content Basic concepts and classifying differential equations, First-order differential equations and engineering applications, Second and higher order differential equations and engineering a Power series solutions of linear equations with variable coefficients, Systems of linear differential equations: Scalar and Matrix methods, Laplace transformations, Numerical methods for ord differential equations								
	Power series sequations: Sca	solutions of lin	near equation	s with vari	able coefficien	ts, Systems	of linear different	ial
Work Placement	Power series sequations: Sca	solutions of lin	near equation	s with vari	able coefficien	ts, Systems	of linear different	ial
Work Placement Planned Learning Activities	Power series sequations: Sca differential equ	solutions of lir alar and Matri uations	near equation x methods, L	s with vari aplace tra	able coefficien nsformations, I	ts, Systems Numerical m	of linear different	ial ry

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	15				
Final Examination	1	60				
Quiz	4	15				
Assignment	5	5				
Term Assignment	1	5				

Recommended or Required Reading 1 Stephen H. Saperstone, Introduction to Ordinary Differential Equations, Brooks/Cole Publishing Company, 1998 2 C. Henry Edwards and David E. Penney, Elementary Differential Equations, Prentice Hall, Inc., 2000. William E. Boyce and Richard C. DiPrima, Elementary Differential Equations and Boundary Value Problems, John Wiley & Sons, Inc., 1997

Week	Weekly Detailed Course Contents					
1	Theoretical	First Order Differential Equations				
2	Theoretical	Application of First Order Differential Equations				
3	Theoretical	Second Order Differential Equations				
4	Theoretical	Application of Second Order Differential Equations				
5	Theoretical	Higher Order Linear Differential Equations				
6	Theoretical	Various Solution of Higher Order Linear Differential Equations				
7	Theoretical	Various Solution of Higher Order Linear Differential Equations				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	Systems of Linear Differential Equations				
10	Theoretical	Non-linear Differential Equations				
11	Theoretical	Partial Differential Equations and Fourier Series				
12	Theoretical	Laplace Transforms				
13	Theoretical	Solutions of Differential Equations with Laplace Transforms				
14	Theoretical	Boundary Value Problems and Sturm-Liouville Theorems				
15	Theoretical	Boundary Value Problems and Sturm-Liouville Theorems				
16	Final Exam	Final Exam				

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	16	2	4	96		
Assignment	5	0	3	15		
Term Project	1	15	10	25		

Quiz	4	4	1	20	
Midterm Examination	1	15	2	17	
Final Examination	1	20	2	22	
	195				
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes

- 1 To be able to develop a clear understanding of differential, differential equation concepts and their physical meanings
- 2 To be able to learn the definitions and solution methods of the first order differential equations
- 3 To be able to apply the first order differential equation to related physics problems,
- To be able to learn the definitions and solution methods of the high order differential equations and apply them to the related physics problems
- To be able to become familiar with the Laplace transforms use them to solve differential equations

Programme Outcomes (Mechanical Engineering (English) Master)

- To be able to access wide and deep information with scientific researches in the field of Engineering, evaluate, interpret and implement the knowledge gained in his/her field of study
- 2 To be able to complete and implement "limited or incomplete data" by using the scientific methods
- To be able to consolidate engineering problems, develop proper method(s) to solve and apply the innovative solutions to them
- To be able to develop new and original ideas and method(s), to develop new innovative solutions at design of system, component or process
- To be able to gain comprehensive information on modern techniques, methods and their borders which are being applied to engineering
- To be able to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process
- 7 To be able to gain high level ability to define the required information and data
- 8 To be able to work in multi-disciplinary teams and to take responsibility to define approaches for complex situations
- To be able to transfer of the process and results of studies at national and international environments systematic and clear verbal or written
- To be able to be aware of social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, and announcement
- To be able to become aware of new and developing application of profession and ability to analyze and study on those applications
- To be able to interpret engineering application's social and environmental dimensions and it's compliance with the social environment

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2:Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	3	5	3	3
P2	3	4	4	4	4
P3	5	5	5	5	5
P4	4	5	4	5	5
P5	3	4	5	4	4
P6	4	3	4	5	5
P7	5	4	4	4	4
P8	5	5	4	3	5
P9	4	5	5	4	5
P10	3	4	5	5	5
P11	5	4	5	4	5
P12	4	5	3	4	4

