

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Differential Eguations and Applications							
Course Code		MME528		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8		Workload	195 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		To instruct the equations in M			ons and re	al life application	ons of ordina	ary and partial diffe	erential
Course Content		engineering a Power series	pplications, So solutions of lir alar and Matri	econd and higher	gher orde s with var	r differential equi iable coefficien	uations and ts, Systems	quations and their engineering appli of linear differenti nethods for ordinal	cations, al
Work Placement N/A									
Planned Learning Activities and Teaching Methods		Explanation Study	(Presenta	ation), Discussi	on, Project E	Based Study, Indiv	vidual		
Name of Lecturer(s) Assoc. Prof. Adem ÖZÇEL			К						

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	30
Final Examination	1	60
Assignment	1	5
Term Assignment	1	5

Recommended or Required Reading

1	1. Stephen H. Saperstone, Introduction to Ordinary Differential Equations, Brooks/Cole Publishing Company, 1998.
2	2. C. Henry Edwards and David E. Penney, Elementary Differential Equations, Prentice Hall, Inc., 2000.
	3. William E. Boyce and Richard C. DiPrima, Elementary Differential Equations and Boundary Value Problems, John Wiley & Sons, Inc., 1997.

Week	Weekly Detailed Course Contents							
1	Theoretical	First Order Differential Equations						
2	Theoretical	Application of First Order Differential Equations						
3	Theoretical	Second Order Differential Equations						
4	Theoretical	Application of Second Order Differential Equations						
5	Theoretical	Higher Order Linear Differential Equations						
6	Theoretical	Various Solution of Higher Order Linear Differential Equations						
7	Theoretical	Various Solution of Higher Order Linear Differential Equations						
8	Intermediate Exam	Midterm Exam						
9	Theoretical	Systems of Linear Differential Equations						
10	Theoretical	Non-linear Differential Equations						
11	Theoretical	Partial Differential Equations and Fourier Series						
12	Theoretical	Laplace Transforms						
13	Theoretical	Solutions of Differential Equations with Laplace Transforms						
14	Theoretical	Boundary Value Problems and Sturm-Liouville Theorems						
15	Theoretical	Boundary Value Problems and Sturm-Liouville Theorems						
16	Final Exam	Final Exam						

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	16	2	4	96
Assignment	5	0	3	15
Term Project	1	15	10	25
Quiz	4	4	1	20

Course	Information	Form

Midterm Examination	1		15	2	17
Final Examination	1		20	2	22
Total Workload (Hours)				195	
[Total Workload (Hours) / 25*] = ECTS					8
*25 hour workload is accepted as 1 ECTS					

Learn	ning Outcomes					
1	1. develop a clear understanding of differential, differential equation concepts and their physical meanings,					
2	2. learn the definitions and solution methods of the first order differential equations,					
3	3. apply the first order differential equation to related physics problems,					
4	4. learn the definitions and solution methods of the high order differential equations and apply them to the related physics problems,					
5	5. become familiar with the Laplace transforms use them to solve differential equations					

Programme Outcomes (Mechanical Engineering (English) Master)

riogi	
1	To be able to access wide and deep information with scientific researches in the field of Engineering, evaluate, interpret and implement the knowledge gained in his/her field of study
2	To be able to complete and implement "limited or incomplete data" by using the scientific methods
3	To be able to consolidate engineering problems, develop proper method(s) to solve and apply the innovative solutions to them
4	To be able to develop new and original ideas and method(s), to develop new innovative solutions at design of system, component or process
5	To be able to gain comprehensive information on modern techniques, methods and their borders which are being applied to engineering
6	To be able to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process
7	To be able to gain high level ability to define the required information and data
8	To be able to work in multi-disciplinary teams and to take responsibility to define approaches for complex situations
9	To be able to transfer of the process and results of studies at national and international environments systematic and clear verbal or written
10	To be able to be aware of social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, and announcement
11	To be able to become aware of new and developing application of profession and ability to analyze and study on those applications
12	To be able to interpret engineering application's social and environmental dimensions and it's compliance with the social environment

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	4	5	4	5
P2	4	5	4	5	4
P3	3	4	5	4	4
P4	5	5	4	3	5
P5	4	4	3	5	4
P6	3	3	5	4	3
P7	5	5	4	3	5
P8	4	4	5	5	4
P9	5	3	5	4	5
P10	4	5	3	3	5
P11	5	4	5	5	3
P12	5	3	4	4	5

