

## AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title Fatigue                           |  | Fatigue Beha   | viors of Materi           | ials                            |                            |                                |                    |                                                               |          |
|------------------------------------------------|--|----------------|---------------------------|---------------------------------|----------------------------|--------------------------------|--------------------|---------------------------------------------------------------|----------|
| Course Code                                    |  | MME534         |                           | Couse Level                     |                            | Second Cycle (Master's Degree) |                    |                                                               |          |
| ECTS Credit 8                                  |  | Workload       | 200 (Hours)               | Theory                          | 3                          | Practice                       | 0                  | Laboratory                                                    | 0        |
| Objectives of the Course                       |  | gain presenta  | tion of knowle            | dge and skill                   | about the i                | relevant param                 | neters based       | esign against to f<br>on material, heat<br>on to students     |          |
| Course Content                                 |  | calculation of | experimentall             | y. Fatigue str<br>gue. Basics o | ength diag<br>f fracture n | rams. In desig                 | n against to fa    | trength of materia<br>atigue classic me<br>lations and in des | thod and |
| Work Placement N/A                             |  |                |                           |                                 |                            |                                |                    |                                                               |          |
| Planned Learning Activities and Teaching Metho |  | Methods        | Explanation<br>Problem So | <b>`</b>                        | tion), Discussio           | on, Case Stud                  | dy, Individual Stu | dy,                                                           |          |
| Name of Lecturer(s)                            |  |                |                           |                                 |                            |                                |                    |                                                               |          |

## **Assessment Methods and Criteria**

| Method              | Quantity | Percentage (%) |    |
|---------------------|----------|----------------|----|
| Midterm Examination |          | 1              | 30 |
| Final Examination   |          | 1              | 50 |
| Seminar             |          | 1              | 10 |
| Assignment          |          | 1              | 10 |

## **Recommended or Required Reading**

| 1 | Çelik ve dökme demirlerin yorulma dayanımı, Çev. Ş.Güleç, A.Aran, Tübitak Yayınları, 1983.                                                             |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2 | Fundamentals of Metal Fatigue Analysis, J.A. Bannantine, J.J. Comer, Prentice Hall, New Jersey 1990.                                                   |  |
| 3 | N.E. Dowling, Mechanical Behavior of Materials: Engineering Methods of Deformation, Fracture, and Fatigue, 2nd ed., Prentice-Hall, , New Jersey, 1999. |  |
|   |                                                                                                                                                        |  |

| Week | Weekly Detailed Course Contents |                                                                                                                                                                                        |  |  |  |  |  |
|------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1    | Theoretical                     | Fatigue loading and fatigue fracture, mechanism, impotance and basis effects                                                                                                           |  |  |  |  |  |
| 2    | Theoretical                     | Microscopic data of fractured parts and loading relations                                                                                                                              |  |  |  |  |  |
| 3    | Theoretical                     | To determine fatigue strength, wohler curve, low-cycle fatigue and long-cycle fatigue areas, to get strain-cycle number curve, statistic methods                                       |  |  |  |  |  |
| 4    | Theoretical                     | Using of SMITH diagram in design                                                                                                                                                       |  |  |  |  |  |
| 5    | Theoretical                     | Material selection for fatigue loading, fatigue properties of steel and cast ironand their diffrences, Wohler and Smith diagrams, basic acceptance on determining materials properties |  |  |  |  |  |
| 6    | Theoretical                     | Fatigue behaviour of welded link, effects of heat treatments and results                                                                                                               |  |  |  |  |  |
| 7    | Theoretical                     | Fatigue of materials in corrosive condition and results                                                                                                                                |  |  |  |  |  |
| 8    | Intermediate Exam               | Midterm                                                                                                                                                                                |  |  |  |  |  |
| 9    | Theoretical                     | Effects of coatings in corrosion fatigue                                                                                                                                               |  |  |  |  |  |
| 10   | Theoretical                     | Effect of constructive notchs on fatigue behaviour                                                                                                                                     |  |  |  |  |  |
| 11   | Theoretical                     | Effects of surface hardening processes in plain and notched parts to fatigue strength                                                                                                  |  |  |  |  |  |
| 12   | Theoretical                     | Fatigue properties of plastic and composite materials. Calculation of fatigue strength for machine parts                                                                               |  |  |  |  |  |
| 13   | Theoretical                     | Fracture mechanics approach and its applications in determining fatigue life for cracked parts                                                                                         |  |  |  |  |  |
| 14   | Theoretical                     | Fatigue phase diagram, numerical examples belogn to classical design in fatigue, to take preventive measures in point of increasing fatigue strength and applications                  |  |  |  |  |  |
| 15   | Final Exam                      | Final Exam                                                                                                                                                                             |  |  |  |  |  |

# **Workload Calculation**

| Activity         | Quantity | Preparation | Duration | Total Workload |  |  |
|------------------|----------|-------------|----------|----------------|--|--|
| Lecture - Theory | 13       | 7           | 3        | 130            |  |  |
| Assignment       | 6        | 2           | 1        | 18             |  |  |
|                  |          |             |          |                |  |  |



| Individual Work                              | 6 |  | 1  | 0 | 6  |  |  |
|----------------------------------------------|---|--|----|---|----|--|--|
| Midterm Examination                          | 1 |  | 20 | 3 | 23 |  |  |
| Final Examination                            | 1 |  | 20 | 3 | 23 |  |  |
| Total Workload (Hours)                       |   |  |    |   |    |  |  |
| [Total Workload (Hours) / 25*] = <b>ECTS</b> |   |  |    |   |    |  |  |
| *25 hour workload is accepted as 1 ECTS      |   |  |    |   |    |  |  |

| Learning Outcomes                                                    |                                                                     |                                                                   |
|----------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|
| 1 Evaluate the application limits of m                               | niner rule and the assumptions                                      | made                                                              |
| 2 Acquires knowledge about fatigue                                   | force and fracture, mechanism                                       | n, importance and basic factors                                   |
| 3 Ability to utilize SMITH diagrams                                  |                                                                     |                                                                   |
| 4 Understands the fatigue properties                                 | s of plastics and composite mat                                     | terials                                                           |
| 5 Assessment of knowledge about fataken in fatigue resistance increm | atigue phase diagram, quantita<br>iental direction and applications | tive examples of classical design in fatigue, measures to be<br>s |
|                                                                      |                                                                     |                                                                   |
| Programme Outcomes (Mechanical Eng                                   | gineering (English) Master)                                         |                                                                   |

| 1  | To be able to access wide and deep information with scientific researches in the field of Engineering, evaluate, interpret and implement the knowledge gained in his/her field of study |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | To be able to complete and implement "limited or incomplete data" by using the scientific methods                                                                                       |
| 3  | To be able to consolidate engineering problems, develop proper method(s) to solve and apply the innovative solutions to them                                                            |
| 4  | To be able to develop new and original ideas and method(s), to develop new innovative solutions at design of system, component or process                                               |
| 5  | To be able to gain comprehensive information on modern techniques, methods and their borders which are being applied to engineering                                                     |
| 6  | To be able to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process                 |
| 7  | To be able to gain high level ability to define the required information and data                                                                                                       |
| 8  | To be able to work in multi-disciplinary teams and to take responsibility to define approaches for complex situations                                                                   |
| 9  | To be able to transfer of the process and results of studies at national and international environments systematic and clear verbal or written                                          |
| 10 | To be able to be aware of social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, and announcement  |
| 11 | To be able to become aware of new and developing application of profession and ability to analyze and study on those applications                                                       |
| 12 | To be able to interpret engineering application's social and environmental dimensions and it's compliance with the social environment                                                   |
|    |                                                                                                                                                                                         |

# Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|     |    |    | -  |    |    |
|-----|----|----|----|----|----|
|     | L1 | L2 | L3 | L4 | L5 |
| P1  | 5  | 4  | 5  | 5  | 4  |
| P2  | 4  | 5  | 4  | 4  | 5  |
| P3  | 4  | 4  | 5  | 4  | 4  |
| P4  | 5  | 3  | 4  | 5  | 3  |
| P5  | 3  | 5  | 3  | 4  | 5  |
| P6  | 3  | 4  | 5  | 3  | 4  |
| P7  | 5  | 3  | 4  | 5  | 5  |
| P8  | 4  | 5  | 5  | 4  | 5  |
| P9  | 5  | 4  | 4  | 5  | 4  |
| P10 | 4  | 5  | 5  | 5  | 3  |
| P11 | 5  | 5  | 3  | 4  | 5  |
| P12 | 5  | 5  | 5  | 5  | 5  |

