

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Dynamical System Modelling and Simulation						
Course Code	MME539	Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8	Workload 198 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course	To introduce fundamentals on modelling and simulation of dynamical systems, and to provide simulation tools to obtain response of dynamical systems						
Course Content	Modeling dynamical systems, numerical tools to simulate behavior of dynamical systems.						
Work Placement N/A							
Planned Learning Activities	Explanation	(Presenta	ation)				
Name of Lecturer(s)	Lec. Turgay ERAY						

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	20				
Final Examination	1	50				
Assignment	1	30				

Recommended or Required Reading 1 Modelling and Simulation of Dynamic Systems", Robert L. Woods, Lent L. Lawrence 2 Modelling, Analysis & Control of Dynamic Systems. William J. Palm, III

Week	Weekly Detailed Course Contents				
1	Theoretical	Introduction to Modeling and Simulation			
2	Theoretical	Formulation of Engineering Systems: Differential Equations			
3	Theoretical	Mechanical Systems: Translational and Rotational			
4	Theoretical	D'Alembert's Principle and Lagrange Mechanics			
5	Theoretical	Electrical Systems			
6	Theoretical	Mixed Discipline Systems: Electromechanical system example			
7	Theoretical	Modeling examples: Problem solutions			
8	Intermediate Exam	Midterm Exam			
9	Theoretical	Thermal and Fluid Systems			
10	Theoretical	Nonlinear systems: Linearization			
11	Theoretical	Stability analysis: Lyapunov stability criterion			
12	Theoretical	Frequency response analysis			
13	Theoretical	Time response analysis of linear systems: Analytical solutions			
14	Theoretical	Time response analysis of linear systems: Simulation tools			
15	Theoretical	Time response analysis: Simulation examples			
16	Final Exam	Final			

Workload Calculation					
Activity	Quantity	Preparation Duration		Total Workload	
Lecture - Theory	14	5	4	126	
Assignment	3	1	3	12	
Term Project	1	10	5	15	
Quiz	4	3	1	16	
Midterm Examination	1	15	2	17	
Final Examination	1	10	2	12	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 ECTS					

Learn	ing Outcomes				
1	To learn modeling and simulation of dynamical systems				
2	To be able to solve differential equations by using numerical tools				
3	To enrich programming and simulation skills for real-life problems.				
4	Ability to set dynamic system				
5	To be able to solve dynamic system problems				

Programme Outcomes (Mechanical Engineering (English) Master)

- To be able to access wide and deep information with scientific researches in the field of Engineering, evaluate, interpret and implement the knowledge gained in his/her field of study
- 2 To be able to complete and implement "limited or incomplete data" by using the scientific methods
- 3 To be able to consolidate engineering problems, develop proper method(s) to solve and apply the innovative solutions to them
- To be able to develop new and original ideas and method(s), to develop new innovative solutions at design of system, component or process
- To be able to gain comprehensive information on modern techniques, methods and their borders which are being applied to engineering
- To be able to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process
- 7 To be able to gain high level ability to define the required information and data
- 8 To be able to work in multi-disciplinary teams and to take responsibility to define approaches for complex situations
- To be able to transfer of the process and results of studies at national and international environments systematic and clear verbal or written
- To be able to be aware of social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, and announcement
- To be able to become aware of new and developing application of profession and ability to analyze and study on those applications
- To be able to interpret engineering application's social and environmental dimensions and it's compliance with the social environment

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	4	5	5	5
P2	5	5	4	5	5
P3	5	5	3	4	4
P4	4	5	4	5	4
P5	3	4	4	3	5
P6	4	5	4	5	4
P7	5	3	5	5	3
P8	5	3	5	5	3
P9	3	5	5	4	4
P10	4	5	3	5	4
P11	5	5	4	4	4
P12	5	3	5	5	5

