AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM | Course Title Heat Exhangers | | | | | | | | | |---|-----------------------------------|--|-------------|----------------------------|--------------------------------|------------------|--------------------|-------| | Course Code | MME505 | | Couse Level | | Second Cycle (Master's Degree) | | | | | ECTS Credit 8 | CTS Credit 8 Workload 195 (Hours) | | Theory | 3 | Practice | 0 | Laboratory | 0 | | Objectives of the Course The aim of this course is to problems in heat each of the course is to problem of this course is to problem. | | | , and comp | act heat exc | | | | | | Course Content Classification of heat exchan pumping power, material se | | | | | | changer pressure | drop and | | | Work Placement N/A | | | | | | | | | | Planned Learning Activities and Teaching Methods | | | | n (Presenta
blem Solvin | | on, Project Ba | ased Study, Indivi | idual | | Name of Lecturer(s) Assoc. Prof. Mustafa ASKER | | | R | | | | | | | Assessment Methods and Criteria | | | | | | | | |---------------------------------|----------|----------------|--|--|--|--|--| | Method | Quantity | Percentage (%) | | | | | | | Midterm Examination | 1 | 15 | | | | | | | Final Examination | 1 | 60 | | | | | | | Quiz | 4 | 15 | | | | | | | Assignment | 5 | 5 | | | | | | | Term Assignment | 1 | 5 | | | | | | ## **Recommended or Required Reading** - Kakac, S., Pramuanjaroenkij, A., Liu, H., Heat Exchangers: Selection, Rating and Thermal Design, 2nd edition, CRC Press, 2002. - 2 Kays, W.M., London A.L., Compact Heat Exchangers, 3rd edition, Krieger Publishing Company, 1998. - 3 Shah, R.K., Sekulic D.P., Fundamentals of heat exchanger design, 1st edition, Wiley, 2002. | Week | Weekly Detailed Cour | se Contents | |------|----------------------|---| | 1 | Theoretical | Classification of heat exchangers | | 2 | Theoretical | Fundamental Definitions | | 3 | Theoretical | Temperature Profiles in Steady Conditions | | 4 | Theoretical | Variable Heat Transfer Temperature Coefficients | | 5 | Theoretical | Design of Heat Exchangers With Fins | | 6 | Theoretical | Design of Evaporators | | 7 | Theoretical | Design of Evaporators | | 8 | Intermediate Exam | Midterm Exam | | 9 | Theoretical | Design of Compact Heat Exchangers | | 10 | Theoretical | Design of Compact Heat Exchangers | | 11 | Theoretical | Air-Cooled Heat Exchangers | | 12 | Theoretical | Shell-and-Tube Reboilers | | 13 | Theoretical | Pressure Drop In Heat Exchangers | | 14 | Theoretical | Pressure Drop In Heat Exchangers | | 15 | Theoretical | Material Selection and Stress Calculations In Heat Exchangers | | 16 | Final Exam | Final Exam | | Workload Calculation | | | | | | | | | |----------------------|----------|-------------|----------|----------------|--|--|--|--| | Activity | Quantity | Preparation | Duration | Total Workload | | | | | | Lecture - Theory | 16 | 2 | 4 | 96 | | | | | | Lecture - Practice | 5 | 0 | 3 | 15 | | | | | | Term Project | 1 | 15 | 10 | 25 | | | | | | Quiz | 4 | 4 | 1 | 20 | | | | | | Midterm Examination | 1 | 15 | 2 | 17 | | | |---|---|-------------------|-----------------------------|-----|--|--| | Final Examination | 1 | 20 | 2 | 22 | | | | | | To | tal Workload (Hours) | 195 | | | | | | [Total Workload (| Hours) / 25*] = ECTS | 8 | | | | *25 hour workload is accepted as 1 ECTS | | | | | | | | Learn | ing Outcomes | |-------|--| | 1 | To be able to classify the heat exchangers | | 2 | To be able to calculate overall heat transfer coefficient | | 3 | To be able to analyse the heat exchanger using log mean temperature difference | | 4 | To be able to analyse the heat exchanger using effectiveness-number of transfer unit methods | | 5 | To be able to analyse of shell-tube heat exchanger | | 6 | To be able to calculate pressure drop and pumping power | | 7 | To be able to select materials for heat exchanger design | | 8 | To be able to calculate the strength of materials for heat exchangers | ## Programme Outcomes (Mechanical Engineering Master's Without Thesis) - To be able to access wide and deep information with scientific researches in the field of Engineering, evaluate, interpret and implement the knowledge gained in his/her field of study - 2 To be able to complete and implement "limited or incomplete data" by using the scientific methods - 3 To be able to consolidate engineering problems, develop proper method(s) to solve and apply the innovative solutions to them - To be able to develop new and original ideas and method(s), to develop new innovative solutions at design of system, component or process - To be able to gain comprehensive information on modern techniques, methods and their borders which are being applied to engineering - To be able to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process - 7 To be able to gain high level ability to define the required information and data - 8 To be able to work in multi-disciplinary teams and to take responsibility to define approaches for complex situations - To be able to transfer of the process and results of studies at national and international environments systematic and clear verbal or written - To be able to become aware of social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, and announcement - To be able to become aware of new and developing application of profession and ability to analyze and study on those applications - To be able to gain ability to interpret engineering application's social and environmental dimensions and it's compliance with the social environment ## Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2:Low, 3: Medium, 4: High, 5: Very High | | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | |-----|----|----|----|----|----|----|----|----| | P1 | 4 | 4 | 4 | 4 | 4 | 3 | 4 | 5 | | P2 | 3 | 3 | 4 | 4 | 4 | 3 | 4 | 5 | | P3 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | 5 | | P4 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | | P5 | 4 | 4 | 3 | 3 | 3 | 3 | 4 | 4 | | P6 | 4 | 4 | 4 | 5 | 4 | 4 | 4 | 4 | | P7 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | | P8 | 4 | 4 | 3 | 4 | 3 | 4 | 4 | 4 | | P9 | 4 | 3 | 5 | 3 | 4 | 4 | 4 | 4 | | P10 | 3 | 4 | 5 | 4 | 4 | 5 | 5 | 5 | | P11 | 4 | 5 | 5 | 5 | 5 | 5 | 4 | 4 | | P12 | 3 | 4 | 5 | 5 | 3 | 3 | 4 | 5 |