

## AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title Heat Exhangers                                                                                                                                                                                                   |                                   |  |             |                            |                                |                  |                    |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|-------------|----------------------------|--------------------------------|------------------|--------------------|-------|
| Course Code                                                                                                                                                                                                                   | MME505                            |  | Couse Level |                            | Second Cycle (Master's Degree) |                  |                    |       |
| ECTS Credit 8                                                                                                                                                                                                                 | CTS Credit 8 Workload 195 (Hours) |  | Theory      | 3                          | Practice                       | 0                | Laboratory         | 0     |
| Objectives of the Course  The aim of this course is to problems in heat each of the course is to problem of this course is to problem. |                                   |  | , and comp  | act heat exc               |                                |                  |                    |       |
| Course Content Classification of heat exchan pumping power, material se                                                                                                                                                       |                                   |  |             |                            |                                | changer pressure | drop and           |       |
| Work Placement N/A                                                                                                                                                                                                            |                                   |  |             |                            |                                |                  |                    |       |
| Planned Learning Activities and Teaching Methods                                                                                                                                                                              |                                   |  |             | n (Presenta<br>blem Solvin |                                | on, Project Ba   | ased Study, Indivi | idual |
| Name of Lecturer(s) Assoc. Prof. Mustafa ASKER                                                                                                                                                                                |                                   |  | R           |                            |                                |                  |                    |       |

| Assessment Methods and Criteria |          |                |  |  |  |  |  |
|---------------------------------|----------|----------------|--|--|--|--|--|
| Method                          | Quantity | Percentage (%) |  |  |  |  |  |
| Midterm Examination             | 1        | 15             |  |  |  |  |  |
| Final Examination               | 1        | 60             |  |  |  |  |  |
| Quiz                            | 4        | 15             |  |  |  |  |  |
| Assignment                      | 5        | 5              |  |  |  |  |  |
| Term Assignment                 | 1        | 5              |  |  |  |  |  |

## **Recommended or Required Reading**

- Kakac, S., Pramuanjaroenkij, A., Liu, H., Heat Exchangers: Selection, Rating and Thermal Design, 2nd edition, CRC Press, 2002.
- 2 Kays, W.M., London A.L., Compact Heat Exchangers, 3rd edition, Krieger Publishing Company, 1998.
- 3 Shah, R.K., Sekulic D.P., Fundamentals of heat exchanger design, 1st edition, Wiley, 2002.

| Week | Weekly Detailed Cour | se Contents                                                   |
|------|----------------------|---------------------------------------------------------------|
| 1    | Theoretical          | Classification of heat exchangers                             |
| 2    | Theoretical          | Fundamental Definitions                                       |
| 3    | Theoretical          | Temperature Profiles in Steady Conditions                     |
| 4    | Theoretical          | Variable Heat Transfer Temperature Coefficients               |
| 5    | Theoretical          | Design of Heat Exchangers With Fins                           |
| 6    | Theoretical          | Design of Evaporators                                         |
| 7    | Theoretical          | Design of Evaporators                                         |
| 8    | Intermediate Exam    | Midterm Exam                                                  |
| 9    | Theoretical          | Design of Compact Heat Exchangers                             |
| 10   | Theoretical          | Design of Compact Heat Exchangers                             |
| 11   | Theoretical          | Air-Cooled Heat Exchangers                                    |
| 12   | Theoretical          | Shell-and-Tube Reboilers                                      |
| 13   | Theoretical          | Pressure Drop In Heat Exchangers                              |
| 14   | Theoretical          | Pressure Drop In Heat Exchangers                              |
| 15   | Theoretical          | Material Selection and Stress Calculations In Heat Exchangers |
| 16   | Final Exam           | Final Exam                                                    |

| Workload Calculation |          |             |          |                |  |  |  |  |
|----------------------|----------|-------------|----------|----------------|--|--|--|--|
| Activity             | Quantity | Preparation | Duration | Total Workload |  |  |  |  |
| Lecture - Theory     | 16       | 2           | 4        | 96             |  |  |  |  |
| Lecture - Practice   | 5        | 0           | 3        | 15             |  |  |  |  |
| Term Project         | 1        | 15          | 10       | 25             |  |  |  |  |
| Quiz                 | 4        | 4           | 1        | 20             |  |  |  |  |



| Midterm Examination                     | 1 | 15                | 2                           | 17  |  |  |
|-----------------------------------------|---|-------------------|-----------------------------|-----|--|--|
| Final Examination                       | 1 | 20                | 2                           | 22  |  |  |
|                                         |   | To                | tal Workload (Hours)        | 195 |  |  |
|                                         |   | [Total Workload ( | Hours) / 25*] = <b>ECTS</b> | 8   |  |  |
| *25 hour workload is accepted as 1 ECTS |   |                   |                             |     |  |  |

| Learn | ing Outcomes                                                                                 |
|-------|----------------------------------------------------------------------------------------------|
| 1     | To be able to classify the heat exchangers                                                   |
| 2     | To be able to calculate overall heat transfer coefficient                                    |
| 3     | To be able to analyse the heat exchanger using log mean temperature difference               |
| 4     | To be able to analyse the heat exchanger using effectiveness-number of transfer unit methods |
| 5     | To be able to analyse of shell-tube heat exchanger                                           |
| 6     | To be able to calculate pressure drop and pumping power                                      |
| 7     | To be able to select materials for heat exchanger design                                     |
| 8     | To be able to calculate the strength of materials for heat exchangers                        |

## Programme Outcomes (Mechanical Engineering Master's Without Thesis)

- To be able to access wide and deep information with scientific researches in the field of Engineering, evaluate, interpret and implement the knowledge gained in his/her field of study
- 2 To be able to complete and implement "limited or incomplete data" by using the scientific methods
- 3 To be able to consolidate engineering problems, develop proper method(s) to solve and apply the innovative solutions to them
- To be able to develop new and original ideas and method(s), to develop new innovative solutions at design of system, component or process
- To be able to gain comprehensive information on modern techniques, methods and their borders which are being applied to engineering
- To be able to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process
- 7 To be able to gain high level ability to define the required information and data
- 8 To be able to work in multi-disciplinary teams and to take responsibility to define approaches for complex situations
- To be able to transfer of the process and results of studies at national and international environments systematic and clear verbal or written
- To be able to become aware of social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, and announcement
- To be able to become aware of new and developing application of profession and ability to analyze and study on those applications
- To be able to gain ability to interpret engineering application's social and environmental dimensions and it's compliance with the social environment

## Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2:Low, 3: Medium, 4: High, 5: Very High

|     | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 |
|-----|----|----|----|----|----|----|----|----|
| P1  | 4  | 4  | 4  | 4  | 4  | 3  | 4  | 5  |
| P2  | 3  | 3  | 4  | 4  | 4  | 3  | 4  | 5  |
| P3  | 5  | 5  | 5  | 5  | 4  | 4  | 4  | 5  |
| P4  | 3  | 3  | 3  | 3  | 3  | 3  | 4  | 4  |
| P5  | 4  | 4  | 3  | 3  | 3  | 3  | 4  | 4  |
| P6  | 4  | 4  | 4  | 5  | 4  | 4  | 4  | 4  |
| P7  | 5  | 4  | 4  | 4  | 4  | 4  | 4  | 5  |
| P8  | 4  | 4  | 3  | 4  | 3  | 4  | 4  | 4  |
| P9  | 4  | 3  | 5  | 3  | 4  | 4  | 4  | 4  |
| P10 | 3  | 4  | 5  | 4  | 4  | 5  | 5  | 5  |
| P11 | 4  | 5  | 5  | 5  | 5  | 5  | 4  | 4  |
| P12 | 3  | 4  | 5  | 5  | 3  | 3  | 4  | 5  |

