

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Finite Element Analy	/sis					
Course Code	MME507	Couse	e Level	Second Cycle (Master's Degree)			
ECTS Credit 8	Workload 202 (Hours) Theory	y 3	Practice	0	Laboratory	0
Objectives of the Course the objective of the course is to teach the basic fundamentals the underlying theory, assumptions, and modelling issues as using finite element software to model, analyse and design sy			damentals of ssues as well design syster	finite element as providing h ns of relevanc	method with emp ands on experie e to engineers.	phasis on Ince	
Course Content Numerical solution techniqu Element types, real constant results, Sample problems wanalyses.		echnique, Finit constant, Mate blems with ANS	e element metho rial properties, B SYS software: Str	d, Built the mo uilt the model, ructural analys	odel one, two a Mesh genera ses, Thermal A	and three dimens tion, Solution, Re Analyses and Co	sions, eview the uple field
Work Placement	N/A						
Planned Learning Activities and Teaching Methods		ds Explar Study,	nation (Presentat , Problem Solving	ion), Discussio J	on, Project Ba	sed Study, Indivi	dual
Name of Lecturer(s)							

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	15	
Final Examination	1	60	
Quiz	4	15	
Assignment	5	5	
Term Assignment	1	5	

Recommended or Required Reading

1	Hughes T. J. R, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, 2000.	
2	Bathe K. J., Finite Element Procedures, Prentice-Hall, 1996	
3	Reddy J. N., An Introduction to the Finite-Element Method, 3rd edition, McGraw-Hill, 2005.	

Week	Weekly Detailed Course Contents				
1	Theoretical	Introduction to finite element analysis			
2	Theoretical	Review of basic concepts in math and mechanics			
3	Theoretical	1D and 2D finite element methods			
4	Theoretical	Steady and unsteady advection-diffusion problems			
5	Theoretical	Different stabilized formulations of incompressible momentum equations			
6	Theoretical	Direct and iterative techniques for the solution of linear algebraic systems			
7	Theoretical	Direct and iterative techniques for the solution of linear algebraic systems			
8	Intermediate Exam	Midterm Exam			
9	Theoretical	Heat transfer problems with free and forced convection			
10	Theoretical	Heat transfer problems with free and forced convection			
11	Theoretical	Error estimation and adaptive refinement			
12	Theoretical	Formulation and fluid structure interaction			
13	Theoretical	Other advanced topics			
14	Theoretical	Other advanced topics			
15	Theoretical	Other advanced topics			
16	Final Exam	Final Exam			

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	4	3	98
Assignment	5	0	4	20
Term Project	1	15	10	25

COURCO	motion	Form
		FUIII

Quiz	4	4	1	20	
Midterm Examination	1	15	2	17	
Final Examination	1	20	2	22	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS 8					
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes

1	Have knowledge about numerical solution technique
2	Understanding main principle of the numerical solution technique such as finite element method
3	Ability to make structural analysis by the finite element method
4	Ability to make thermal analysis by the finite elements method
5	Ability to apply finite element method to micro scale fluidic problems

Programme Outcomes (Mechanical Engineering Master's Without Thesis)

-	
1	To be able to access wide and deep information with scientific researches in the field of Engineering, evaluate, interpret and implement the knowledge gained in his/her field of study
2	To be able to complete and implement "limited or incomplete data" by using the scientific methods
3	To be able to consolidate engineering problems, develop proper method(s) to solve and apply the innovative solutions to them
4	To be able to develop new and original ideas and method(s), to develop new innovative solutions at design of system, component or process
5	To be able to gain comprehensive information on modern techniques, methods and their borders which are being applied to engineering
6	To be able to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process
7	To be able to gain high level ability to define the required information and data
8	To be able to work in multi-disciplinary teams and to take responsibility to define approaches for complex situations
9	To be able to transfer of the process and results of studies at national and international environments systematic and clear verbal or written
10	To be able to become aware of social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, and announcement
11	To be able to become aware of new and developing application of profession and ability to analyze and study on those applications
12	To be able to gain ability to interpret engineering application's social and environmental dimensions and it's compliance with the social environment

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	3	4	5	4
P2	4	3	4	5	5
P3	4	4	4	5	4
P4	3	3	4	4	5
P5	3	3	4	4	4
P6	4	4	4	4	3
P7	4	4	4	5	5
P8	3	4	4	4	4
P9	4	4	4	4	3
P10	4	5	5	5	3
P11	5	5	4	4	5
P12	3	3	4	5	5

