

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Turbulence ModIling and Applications							
Course Code		MME525		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	8	Workload	195 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course The fundamentals of tu turbulence models				ence and solu	ition proce	edures of turbul	ent flows. R	Recognition of diffe	rent
Course Content		Fundamentals of turbulent flows. The statistical description of turbulence. Algebraic models. The models based on Reynolds averaged Navier Stokes (RANS) equations. Reynolds stress equation models. Direct numerical simulation (DNS). Large eddy simulation (LES).							
Work Placement N/A									
Planned Learning Activities and Teaching Methods		Explanation Study, Prob			on, Project I	Based Study, Indiv	idual		
Name of Lectu	Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	25	
Final Examination	1	25	
Term Assignment	1	50	

Recommended or Required Reading

1	1. Turbulence, J. O. Hinze,McGraw-Hill , 2005.
2	2. A First Course in Turbulence, H. Tennekes, MIT pres, 1999
3	3. Blazek, J., 2001, Computational Fluid Dynamics: Principles and Applications, Elsevier, United Kingdom.
4	4. Ders Notları

Week	Weekly Detailed Cou	urse Contents				
1	Theoretical	What is turbulence? The features of turbulent flows.				
2	Theoretical	Unsteadiness and transition to turbulence				
3	Theoretical	Equations of turbulent flows and closure problem				
4	Theoretical	Turbulence Modelling				
5	Theoretical	Composing mesh in turbulence flow domain, an example in Gambit				
6	Theoretical	Zero, one and two equation turbulence models				
7	Theoretical					
8	Theoretical	Determination of turbulence constants				
9	Theoretical	1st Midterm Exam				
10	Theoretical	Determination of wall functions				
11	Theoretical	Reynolds Stress Models				
12	Theoretical	Direct Numerical Simulation (DNS)				
13	Theoretical	Large Eddy Simulation (LES)				
14	Theoretical	Determination of turbulence model for a sample case and FLUENT practice				
15	Theoretical	Submission of term paper and its presentation				
16	Final Exam	FINAL Exam				

Workload Calculation								
Activity	Quantity	Preparation	Duration	Total Workload				
Lecture - Theory	16	2	4	96				
Assignment	5	0	3	15				
Term Project	1	15	10	25				
Quiz	4	4	1	20				
Midterm Examination	1	15	2	17				

					Course mormation For		
Final Examination	1		20	2	22		
Total Workload (Hours)							
[Total Workload (Hours) / 25*] = ECTS							
*25 hour workload is accepted as 1 ECTS							

Learning Outcomes

Lean	
1	1. Knows the nature of turbulent flows
2	2. Knows Turbulent flow equations, such as continuity, Navier Stokes and Energy equations.
3	3. Knows Reynolds Stress and the other type turbulence flow models
4	4. Knows the modeling of turbulent flow domain and define the relation between the wall boundary conditions and turbulence flow domain.
5	5. Knows how to choose the turbulence model for different type of flow conditions.
6	6. Have experience about turbulence modeling with a commercial code.

Programme Outcomes (Mechanical Engineering Master's Without Thesis)

i i ogi	annie Outoones (meenaniear Engineering Master's Without Thesis)
1	To be able to access wide and deep information with scientific researches in the field of Engineering, evaluate, interpret and implement the knowledge gained in his/her field of study
2	To be able to complete and implement "limited or incomplete data" by using the scientific methods
3	To be able to consolidate engineering problems, develop proper method(s) to solve and apply the innovative solutions to them
4	To be able to develop new and original ideas and method(s), to develop new innovative solutions at design of system, component or process
5	To be able to gain comprehensive information on modern techniques, methods and their borders which are being applied to engineering
6	To be able to design and apply analytical, modeling and experimental based research, analyze and interpret the faced complex issues during the design and apply process
7	To be able to gain high level ability to define the required information and data
8	To be able to work in multi-disciplinary teams and to take responsibility to define approaches for complex situations
9	To be able to transfer of the process and results of studies at national and international environments systematic and clear verbal or written
10	To be able to become aware of social, scientific and ethical values guarding adequacy at all professional activities and at the stage of data collection, interpretation, and announcement
11	To be able to become aware of new and developing application of profession and ability to analyze and study on those applications
12	To be able to gain ability to interpret engineering application's social and environmental dimensions and it's compliance with the social environment

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6
P1	5	4	5	3	5	5
P2	4	5	3	4	4	4
P3	5	4	4	3	5	4
P4	4	3	3	5	4	5
P5	3	5	4	3	3	4
P6	4	3	3	4	4	3
P7	3	4	5	5	3	5
P8	5	5	3	3	5	3
P9	3	5	4	4	3	4
P10	5	4	5	3	5	4
P11	5	3	3	5	5	4
P12	5	5	5	3	3	5

