

AYDIN ADNAN MENDERES UNIVERSITY GRADUATE SCHOOL OF HEALTH SCIENCES BIOSTATISTICS BIOSTATISTICS (MEDICAL) BIOSTATISTICS (MEDICAL) MASTER COURSE INFORMATION FORM

Course Title	Population Ge	enetics						
Course Code	BIS506	BİS506		Couse Level		Second Cycle (Master's Degree)		
ECTS Credit 4	Workload	100 (Hours)	Theory	2	Practice	0	Laboratory	0
Objectives of the Course The course includes princip		cludes princip	les of genet	ic events ir	population ba	se		
Course Content	and genotype selection, bal variance • He selection aga probability of	A Hardy-Weink ance between ritability: Impo inst recessives single gene ar	mutation ar mutation ar rtance, char and domin nd polygenic	ium • Factor ad selection acteristics, ants • Pope diseases,	n, genetic drift • estimation • S ulation Genetic incidence of ge	Variances: election: The s and Huma enetic diseas	con, frequencies of cy: Mutation, migra Phenotypic and g basic selection n in: Genetic counse se	ation, enotypic nodel, eling,
Work Placement N/A								
Planned Learning Activities and Teaching Methods		Methods	Explanation	n (Presenta	ation)			
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	60	

Recommended or Required Reading

1	Hedrick, P. (2011). Genetics of populations. Jones & Bartlett Learning.
2	Nei, M. (1972). Genetic distance between populations. The American Naturalist.
3	Weir, B. S. (1990). Genetic data analysis. Methods for discrete population genetic data. Sinauer Associates, Inc. Publishers.
4	Lange, K. (2003). Mathematical and statistical methods for genetic analysis. Springer Science & Business Media.

Week	Weekly Detailed Cours	se Contents				
1	Theoretical	Introduction to genetic				
2	Theoretical	Genetic variation, measures of genetic variation				
3	Theoretical	Frequencies of gene and genotype, Hardy-Weinberg equilibrium				
4	Theoretical	Mutation, migration, selection				
5	Theoretical	Mutation, migration, selection				
6	Theoretical	Phenotypic and genotypic variance				
7	Theoretical	Phenotypic and genotypic variance				
8	Intermediate Exam	Midterm exam				
9	Theoretical	Phenotypic and genotypic variance				
10	Theoretical	Heritability: Importance, characteristics, estimation				
11	Theoretical	Heritability: Importance, characteristics, estimation				
12	Theoretical	The basic selection model, selection against recessives and dominants				
13	Theoretical	The basic selection model, selection against recessives and dominants				
14	Theoretical	Population Genetics and Human: Genetic counseling, probability of single gene and polygenic diseases, incidence of genetic disease				
15	Theoretical	Literature review and discussion				
16	Final Exam	Final exam				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	0	2	28
Assignment	1	10	0	10
Quiz	14	1	1	28
Midterm Examination	1	10	2	12

Course	Inform	ation	Form

Final Examination	1		20	2	22
	Total Workload (Hours)			100	
			[Total Workload	Hours) / 25*] = ECTS	4
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes

1	To be able to comprehend genetic variation, measurement of genetic variation, gene and genotype frequencies, Hardy-Weinberg equebiliurim
2	To be able to comprehend the concepts of mutation, migration, selection
3	To be able to comprehend the concepts of the balance between mutation and selection, random deviation
4	To be able to make statistical analysis of population genetics and phylogenetic data
5	To understand the concept of molecular evolution

Programme Outcomes (Biostatistics (Medical) Master)

1	To be able to understand the interdisciplinary interaction releated with biostatistics.
2	to be able to use Theoretical and practical knowledge at the level of expertise.
3	To be able to nterpret the information by integrating information from different disciplines and create new information
4	To be able to nalyze the problems encountered by using research methods
5	to be able to conduct a study as an independent specialist
6	To be able to formulate solutions for complex unpredictable problems encountered by developing new approaches and taking responsibility.
7	To be able to resolve problems in environments that require leadership.
8	To be able to evaluate and direct knowledge and skills with a critical approach at the level of expertise.
9	To be able to to give statistical advise at the begining stages of preparing health related projects
10	To be able to get the knowledge and the ability of using statistical packages

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L3	L4
P1	3	3	3
P2	3	2	3
P3	3	2	3
P4	2	3	3
P5	2	3	3
P6	1	3	
P7	3	2	3
P8	3	2	3
P9	3	3	3
P10	1	1	2

