

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Experimental	Design							
Course Code	BIS507		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit 2	Workload	48 (Hours)	Theory	,	1	Practice	0	Laboratory	0
Objectives of the Course				nental principl pment activition		cal methodology are			
Course Content Basics of knowledge productio Research process and modelir analysis Experimental models			eling. Fu	unda	mental stat	istical principa	als. General	Linear Model and its	
Work Placement N/A									
Planned Learning Activities and Teaching Methods				ation	(Presenta	tion), Demons	tration, Indiv	ridual Study	
Name of Lecturer(s) Prof. Mevlüt TÜRE									

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	40			
Final Examination	1	60			

Recommended or Required Reading

- Montgomery, D. C., (2000), Design and Analysis of Experiments, Fifth Edition, John Wiley & Sons, New York, NY.
 Whitehead, J. (1997). The design and analysis of sequential clinical trials. John Wiley & Sons.
- 3 Mead,R. (1990). The Design of Experiments. Statistical principles for practical application. Cambridge Univ. Pres.Cambridge.
- 4 Keppel, G. (1991). Design and analysis: A researcher's handbook. Prentice-Hall, Inc.

Week	Weekly Detailed Course Contents						
1	Theoretical	Introduction to experimental design					
2	Theoretical	Stages of experiment setup					
3	Theoretical	Experimental error and actions to reduce the error					
4	Theoretical	Analysis of variance and its assumptions					
5	Theoretical	Analysis of the sum of squares into components					
6	Theoretical	Single factor experiments					
7	Theoretical	Random blocks design					
8	Intermediate Exam	Midterm exam					
9	Theoretical	Completed random blocks design					
10	Theoretical	Random incomplete blocks design					
11	Theoretical	Latin square design					
12	Theoretical	Greko-Latin square design					
13	Theoretical	Youden square design					
14	Theoretical	Multifactorial experiments, 2 ^k and 3 ^k factorial experiments					
15	Theoretical	Literature review and discussion					
16	Final Exam	Final exam					

Workload Calculation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	0	1	14	
Individual Work	1	0	10	10	
Midterm Examination	1	10	2	12	

Final Examination	1		10	2	12	
Total Workload (Hours)				48		
[Total Workload (Hours) / 25*] = ECTS 2					2	
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes					
1	To learn the importance and aim of experimental design.				
2	To learn the experimental design methods.				
3	Deciding which design to apply				
4	To be able to make statistical analysis of experimental results				
5	To be able to make experiment interpretation and analysis with package programs				

Progr	amme Outcomes (Biostatistics Master)
1	To be able to understand the interdisciplinary interaction releated with biostatistics.
2	to be able to use Theoretical and practical knowledge at the level of expertise.
3	To be able to nterpret the information by integrating information from different disciplines and create new information
4	To be able to nalyze the problems encountered by using research methods
5	to be able to conduct a study as an independent specialist
6	To be able to formulate solutions for complex unpredictable problems encountered by developing new approaches and taking responsibility.
7	To be able to resolve problems in environments that require leadership.
8	To be able to evaluate and direct knowledge and skills with a critical approach at the level of expertise.
9	To be able to to give statistical advise at the begining stages of preparing health related projects
10	To be able to get the knowledge and the ability of using statistical packages

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

			_
	L1	L2	L5
P1	5	3	5
P2	5	4	4
P3	4	4	4
P4	5	4	4
P5	4	4	5
P6	4	4	4
P7	4	5	4
P8	4	4	4
P9	4	4	4
P10	4	4	4

