

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Probability						
Course Code	se Code BİS523 Cous		ouse Level Second Cycle (Master's D		egree)		
ECTS Credit 2	Workload 46 (Hours)	Theory	1	Practice	0	Laboratory	0
Objectives of the Course The objective of this course is to introduce the main issues in the theory and practice of probability and basic inference.							
Course Content Basic Concepts of Probability, Probability Distributions, Sampling and Sampling Distributions, Estimation Hypothesis Testing			stimation,				
Work Placement	N/A						
Planned Learning Activities and Teaching Methods Explanation (Presentation)							
Name of Lecturer(s)	Prof. İmran KURT ÖMÜRLÜ	<u>"</u>					

Assessment Methods and Criteria				
Method	Quantity	Percentage (%)		
Midterm Examination	1	40		
Final Examination	1	60		

Recor	Recommended or Required Reading				
1	AKDENİZ, F. (2012). Olasılık ve İstatistik, 17. B., Nobel Kitabevi y., Adana.				
2	DeGroot, M. H., & Schervish, M. J. (2012). Probability and statistics. Pearson Education.				
3	Billingsley, P. (2008). Probability and measure. John Wiley & Sons.				
4	Jeffreys, H. (1998). The theory of probability. OUP Oxford.				

Week	Weekly Detailed Cour	se Contents			
1	Theoretical	Introduce to discrete distributions, Bernoulli distribution			
2	Theoretical	Binomial distribution			
3	Theoretical	Mean and variance of Binomial distribution, normal approximation to binomial distribution			
4	Theoretical	Geometric and hypergeometric distribution			
5	Theoretical	Introduce to continuous distributions, uniform distribution			
6	Theoretical	Exponential distribution			
7	Theoretical	Normal distribution			
8	Intermediate Exam	Midterm exam			
9	Theoretical	Sampling, sampling distributions, the proporties of point estimation			
10	Theoretical	Interval estimation : The interval estimation for population mean and variance			
11	Theoretical	The interval estimation for population proportion and the difference between two population parameters			
12	Theoretical	Chebyshev's inequality and the central limit theorem			
13	Theoretical	Introduction to hypothesis testing and basic issues, hypothesis testing for population mean			
14	Theoretical	Hypothesis testing for population variance and proportion			
15	Theoretical	Literature review and discussion			
16	Final Exam	Final exam			

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	0	1	14
Assignment	1	10	0	10
Midterm Examination	1	10	1	11

Final Examination	1	10	1	11
Total Workload (Hours)			46	
		[Total Workload	(Hours) / 25*] = ECTS	2
*25 hour workload is accepted as 1 ECTS				

Learn	ing Outcomes
1	To be able to improve the ability statistical analysis with using basic issues and methodology
2	To be able to apply some special distribution, use statistical methods and comment of its outputs.
3	To be able to est of population parameters
4	To be able to estimate intervals for population parameters
5	To be able to make statistical inferences

Progra	amme Outcomes (Biostatistics Master)				
1	To be able to understand the interdisciplinary interaction releated with biostatistics.				
2	to be able to use Theoretical and practical knowledge at the level of expertise.				
3	To be able to nterpret the information by integrating information from different disciplines and create new information				
4	To be able to nalyze the problems encountered by using research methods				
5	to be able to conduct a study as an independent specialist				
6	To be able to formulate solutions for complex unpredictable problems encountered by developing new approaches and taking responsibility.				
7	To be able to resolve problems in environments that require leadership.				
8	To be able to evaluate and direct knowledge and skills with a critical approach at the level of expertise.				
9	To be able to to give statistical advise at the begining stages of preparing health related projects				
10	To be able to get the knowledge and the ability of using statistical packages				

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High L1 L2 L3 L4 L5 P1 P2 РЗ P4 P5 P6 P7 P8 P9

P10