

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Introduction to Artificial Ne	eural Networks				
Course Code	BİS524			cle (Master's Degree)		
ECTS Credit 2	Workload 51 (Hours)	i1 (Hours) Theory 1 Practice 0 Laboratory			0	
Objectives of the Course This course provides basic information about neural networks and provides application examples. Medical usage is included.				S.		
Course Content Base concepts of artificial n learning algorithms.		neural networks, theory	of artificial neura	al networks	s, activation function	ns,
Work Placement	N/A					
Planned Learning Activit	ies and Teaching Methods	Explanation (Present	ation), Project Ba	sed Study	, Individual Study	
Name of Lecturer(s)						

Assessment Methods and Criteria				
Method	Quantity	Percentage (%)		
Midterm Examination	1	40		
Final Examination	1	60		

Reco	mmended or Required Reading
1	Öztemel, E. (2003). Yapay sinir ağlari. PapatyaYayincilik, Istanbul.
2	Zurada, J. M. (1992). Introduction to artificial neural systems (Vol. 8). St. Paul: West publishing company.
3	Haykin, S. S., Haykin, S. S., Haykin, S. S., Elektroingenieur, K., & Haykin, S. S. (2009). Neural networks and learning machines (Vol. 3). Upper Saddle River: Pearson education.
4	Hagan, M. T., Demuth, H. B., Beale, M. H., & De Jesús, O. (1996). Neural network design (Vol. 20). Boston: Pws Pub

Week	Weekly Detailed Course Contents				
1	Theoretical	Basic definitions and concepts			
2	Theoretical	ANN's development history			
3	Theoretical	Structure and basic elements of ANNs			
4	Theoretical	ANN models			
5	Theoretical	Learning and adaptation, neural networks' learning rules-1			
6	Theoretical	Learning and adaptation, neural networks' learning rules-2			
7	Theoretical	Single-layer feedback networks			
8	Intermediate Exam	Midterm exam			
9	Theoretical	Single-layer feedback networks			
10	Theoretical	Multi-layer feedforward networks-1			
11	Theoretical	Multi-layer feedforward networks-2			
12	Theoretical	Activation functions			
13	Theoretical	Applications of neural network-1			
14	Theoretical	Applications of neural network-2			
15	Theoretical	Literature review and discussion			
16	Final Exam	Final exam			

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	0	1	14
Assignment	1	5	0	5
Midterm Examination	1	10	1	11

Final Examination	1		20	1	21
			To	otal Workload (Hours)	51
		[Tota	al Workload (Hours) / 25*] = ECTS	2
*25 hour workload is accepted as 1 ECTS					

Learn	ing Outcomes
1	To be able to comprehend basic ANN
2	To be able to understand Artificial Neural Network structure
3	To be able to comprehend ANN learning algorithms
4	To be able to comprehend the matters to be considered in the design of ANN
5	To be able to explore ANN application areas

Progr	amme Outcomes (Biostatistics Master)				
1	To be able to understand the interdisciplinary interaction releated with biostatistics.				
2	to be able to use Theoretical and practical knowledge at the level of expertise.				
3	To be able to nterpret the information by integrating information from different disciplines and create new information				
4	To be able to nalyze the problems encountered by using research methods				
5	to be able to conduct a study as an independent specialist				
6	To be able to formulate solutions for complex unpredictable problems encountered by developing new approaches and taking responsibility.				
7	To be able to resolve problems in environments that require leadership.				
8	To be able to evaluate and direct knowledge and skills with a critical approach at the level of expertise.				
9	To be able to to give statistical advise at the begining stages of preparing health related projects				
10	To be able to get the knowledge and the ability of using statistical packages				

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High L1 L2 L3 L4 L5 P1 P2 РЗ P4 P5 P6 P7 P8 P9 P10

