

AYDIN ADNAN MENDERES UNIVERSITY GRADUATE SCHOOL OF HEALTH SCIENCES BIOSTATISTICS BIOSTATISTICS (MEDICAL) BIOSTATISTICS (MEDICAL) MASTER COURSE INFORMATION FORM

Course Title		Survival Analysis								
Course Code		BIS526		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit	4	Workload	99 (Hours)	Theor	у	2	Practice	0	Laboratory	0
Objectives of the Course		Introduce the	ntroduce the main statistical concepts, methods and models used in the analysis of survival data.						ta.	
Course Content		Theory and applications of life tabl				olan Meier a	and Cox regre	ssion analysis	•	
Work Placement		N/A								
Planned Learning Activities		and Teaching	Methods	Case	Study	, Project Ba	ased Study, In	dividual Study		
Name of Lecturer(s)		Prof. Mevlüt T	ÜRE							

Assessment Methods and Criteria

Method	Quantity Percentage ((%)	
Midterm Examination		1	40	
Final Examination		1	60	

Recommended or Required Reading

1	Özdamar, K. (2001). SPSS İle Biyoistatistik, Kaan Kitapevi. Baskı. Eskişehir.
2	Kleinbaum, D. G. (1998). Survival analysis, a self learning text. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 40(1), 107-108.
3	Tableman, M., & Kim, J. S. (2003). Survival analysis using S: analysis of time-to-event data. Chapman and Hall/CRC.
4	Le, C. T., & Le. (1997). Applied survival analysis. New York: Wiley.

Week	Weekly Detailed Cours	e Contents					
1	Theoretical	Basic definitions and concepts in survival analysis					
2	Theoretical	Parametric models: exponential					
3	Theoretical	Weibull and other parametric models					
4	Theoretical	Life tables method					
5	Theoretical	Kaplan-Meier estimator					
6	Theoretical	Comparison of Kaplan-Meier survival curves					
7	Theoretical	Cox regression model					
8	Intermediate Exam	Midterm exam					
9	Theoretical	Assumptions in Cox regression model					
10	Theoretical	Parameter estimation in Cox regression model					
11	Theoretical	Testing the significance of coefficients in Cox regression model					
12	Theoretical	Interpretation of coefficients in Cox regression model					
13	Theoretical	Application of Cox regression method with simulated data					
14	Theoretical	IMultivariate survival models					
15	Theoretical	Literature review and discussion					
16	Final Exam	Final exam					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	0	2	28	
Reading	5	0	3	15	
Individual Work	14	0	2	28	
Midterm Examination	1	10	1	11	

				Course mormation i orm
Final Examination	1	15	2	17
	99			
		[Total Workload	(Hours) / 25*] = ECTS	4
*25 hour workload is accepted as 1 ECTS				

	Outeense
i earnino	Outcomes
L oanny	•

Louin	
1	To be able to explain the key features of survival data and different types of censoring and truncation
2	To be able to define hazard and other basic consepts of survival analysis
3	To be able to use non-parametric methods such as the Kaplan-Meier estimator and the log- rank test to analyze survival data
4	To be able to use the Cox proportional hazards model to examine the effect of covariates to survival
5	To be able to implement hypothesis tests for survival data
6	To be able to apply the statistical package SPSS to analyze survival data, and interpret SPSS output

Programme Outcomes (Biostatistics (Medical) Master)

1	To be able to understand the interdisciplinary interaction releated with biostatistics.
2	to be able to use Theoretical and practical knowledge at the level of expertise.
3	To be able to nterpret the information by integrating information from different disciplines and create new information
4	To be able to nalyze the problems encountered by using research methods
5	to be able to conduct a study as an independent specialist
6	To be able to formulate solutions for complex unpredictable problems encountered by developing new approaches and taking responsibility.
7	To be able to resolve problems in environments that require leadership.
8	To be able to evaluate and direct knowledge and skills with a critical approach at the level of expertise.
9	To be able to to give statistical advise at the begining stages of preparing health related projects
10	To be able to get the knowledge and the ability of using statistical packages

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5	L6
P1	3	3	3	3	3	2
P2	4	4	4	4	5	5
P3	2	4	3	3	4	3
P4	3	3	3	3	4	3
P5	4	3	4	4	4	5
P6	3	3	4	4	4	5
P7	3	2	3	3	4	4
P8	3	2	3	3	4	4
P9	3	2	4	4	5	5
P10	3	1	5	5	3	5

