

AYDIN ADNAN MENDERES UNIVERSITY GRADUATE SCHOOL OF HEALTH SCIENCES BIOSTATISTICS BIOSTATISTICS (MEDICAL) BIOSTATISTICS (MEDICAL) MASTER COURSE INFORMATION FORM

Course Title		Bayesian Data	a Analysis						
Course Code		BIS528		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	8	Workload	202 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		The goal of the course is to give an introduction to the theory behind and the tools of Bayesian data analysis.							
Course Content		Bayes' theorem, base concepts of Bayesian data analysis, theory and applications of Bayesian data analysis, comparison of Bayesian and classical statistical methods.							
Work Placement		N/A							
Planned Learning Activities		and Teaching	Methods	Explanation	(Presentat	tion), Project B	ased Study		
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)			
Midterm Examination	1	40			
Final Examination	1	60			

Recommended or Required Reading

1	Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. Chapman and Hall/CRC.	
2	Sivia, D., & Skilling, J. (2006). Data analysis: a Bayesian tutorial. OUP Oxford.	
3	Hoff, P. D. (2009). A first course in Bayesian statistical methods (Vol. 580). New York: Springer.	
4	Congdon, P. (2007). Bayesian statistical modelling (Vol. 704). John Wiley & Sons.	

Week	Weekly Detailed Cours	Veekly Detailed Course Contents				
1	Theoretical	Review of Probability Concepts				
2	Theoretical	Bayes' Law and the Basic Bayesian Framework				
3	Theoretical	Bayesian Analyses for Basic One-Sample Models				
4	Theoretical	Bayesian Linear Models				
5	Theoretical	General Classes of Prior Distributions and Prior Elicitation				
6	Theoretical	Some Useful Monte Carlo Methods (along with use of R)				
7	Theoretical	Assessing Model Quality				
8	Intermediate Exam	Midterm exam				
9	Theoretical	Bayesian Hypothesis Testing				
10	Theoretical	Bayesian Analyses for Two- and k-Sample Models-1				
11	Theoretical	Bayesian Analyses for Two- and k-Sample Models-2				
12	Theoretical	Hierarchical Bayesian Models				
13	Theoretical	Advanced Bayesian Models: Count Regression, Mixed Models, Models for Clustered/Longitudinal Data (Time permitting)-1				
14	Theoretical	Advanced Bayesian Models: Count Regression, Mixed Models, Models for Clustered/Longitudinal Data (Time permitting)-2				
15	Theoretical	Literature review and discussion				
16	Final Exam	Final exam				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	0	3	42
Assignment	2	10	0	20
Seminar	2	15	2	34
Individual Work	10	0	2	20
Quiz	14	2	1	42

				Course Information Form		
Midterm Examination	1	20	2	22		
Final Examination	1	20	2	22		
Total Workload (Hours) 202						
[Total Workload (Hours) / 25*] = ECTS 8						
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes

1	To learn the concepts of Bayes theorem
2	To be able to comprehend the philosophy of Bayesian statistical modeling
3	To be able to comprehend Bayesian models for numerous common data analysis situations, including prior elicitation
4	To be able to use software such as R, SAS or SPSS to implement Bayesian analyses
5	To be able to comprehend basic principles of both conjugate analyses and MCMC-based Bayesian analyses

Programme Outcomes (Biostatistics (Medical) Master)

1	To be able to understand the interdisciplinary interaction releated with biostatistics.
2	to be able to use Theoretical and practical knowledge at the level of expertise.
3	To be able to nterpret the information by integrating information from different disciplines and create new information
4	To be able to nalyze the problems encountered by using research methods
5	to be able to conduct a study as an independent specialist
6	To be able to formulate solutions for complex unpredictable problems encountered by developing new approaches and taking responsibility.
7	To be able to resolve problems in environments that require leadership.
8	To be able to evaluate and direct knowledge and skills with a critical approach at the level of expertise.
9	To be able to to give statistical advise at the begining stages of preparing health related projects
10	To be able to get the knowledge and the ability of using statistical packages

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L2	L3	L4	L5
P1	3	3	2	3
P2	4	4	5	4
P3	4	3	3	4
P4	5	4	4	4
P5	4	3	5	4
P6	4	4	3	3
P7	4	3	3	3
P8	5	4	3	4
P9	5	3	5	4
P10	3	3	5	2

