

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Introduction to	o Bioinformatio	~~					
Course Thie		millouucion	Domonnau						
Course Code		BIS529		Couse Leve	el	Second Cycle	e (Master's D	Degree)	
ECTS Credit	4	Workload	98 (Hours)	Theory	2	Practice	0	Laboratory	0
Objectives of	the Course							aspects of informa ptive repositories.	atics
Course Content								s, the analysis of	
			n interaction a	ind networks	, phylogene			next-generation se prediction, molect	
Work Placeme	ent	protein-protei	n interaction a	ind networks	, phylogene				
		protein-protei dynamics, ge	n interaction a netic linkage,	nd networks gene express	, phylogene sion.	etics, protein st	ructure and		

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	40
Final Examination	1	60

Recommended or Required Reading

1	Claverie, J. M., & Notredame, C. (2006). Bioinformatics for dummies. John Wiley & Sons.	
2	Baxevanis, A. D., & Ouellette, B. F. (2004). Bioinformatics: a practical guide to the analysis of genes and proteins (Vol. 43). John Wiley & Sons.	
3	Zvelebil, M. J., & Baum, J. O. (2007). Understanding bioinformatics. Garland Science.	
4	Rashidi, H. H., & Buehler, L. K. (1999). Bioinformatics basics: applications in biological science and medicine. CRC press.	

Week	Weekly Detailed Course Contents			
1	Theoretical	Introduction to the course: DNA Databases		
2	Theoretical	Protein Databases		
3	Theoretical	DNA Sequencing and Assembly		
4	Theoretical	Translation, Mapping and Primers		
5	Theoretical	Protein Structure Web Tools		
6	Theoretical	Pairwise Comparison Scoring Matrices		
7	Theoretical	Database Similarity Searching		
8	Intermediate Exam	Midterm exam		
9	Theoretical	Multiple Alignment		
10	Theoretical	Motifs, Patterns, and Profiles		
11	Theoretical	Genomics - How were genomes sequenced? Genome Databases and the UCSC Browser		
12	Theoretical	Genome Browsers 2 Comparative Genomics		
13	Theoretical	Dealing with Gene Lists: Gene Ontology		
14	Theoretical	Introduction to Phylogenetic Analysis		
15	Theoretical	Literature review and discussion		
16	Final Exam	Final exam		

Workload Calculation

Activity	Quantity Preparation		Duration	Total Workload
Lecture - Theory	14	0	2	28
Reading	14	0	1	14
Individual Work	14	0	2	28
Midterm Examination	1	10	1	11

				Course mormation Form
Final Examination	1	15	2	17
		Тс	otal Workload (Hours)	98
		[Total Workload (Hours) / 25*] = ECTS	4
*25 hour workload is accepted as 1 ECTS				

Learn	ning Outcomes
1	To be able to comprehend the importance of bioinformatics in the field of health care
2	Understand the basics of biological databases and use them in molecular biology and genetics
3	Identify comparison tools for two or more series and discuss similarity / noncompliance
4	To be able to understand the flow of information between protein-RNA and DNA and to analyze large-scale biological data using various bioinformatics based tools
5	Be able to discuss genomics, proteomics and pharmacogenetic approaches using bioinformatics tools

Programme Outcomes (Biostatistics Master)

1	To be able to understand the interdisciplinary interaction releated with biostatistics.
2	to be able to use Theoretical and practical knowledge at the level of expertise.
3	To be able to nterpret the information by integrating information from different disciplines and create new information
4	To be able to nalyze the problems encountered by using research methods
5	to be able to conduct a study as an independent specialist
6	To be able to formulate solutions for complex unpredictable problems encountered by developing new approaches and taking responsibility.
7	To be able to resolve problems in environments that require leadership.
8	To be able to evaluate and direct knowledge and skills with a critical approach at the level of expertise.
9	To be able to to give statistical advise at the begining stages of preparing health related projects
10	To be able to get the knowledge and the ability of using statistical packages

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2
P1	5	5
P2	3	5
P3	3	5
P4	3	3
P5	4	4
P6	3	5
P7	4	4
P8	3	4
P9	3	5
P10	3	4

