

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Generalized L	inear Models							
Course Code		BIS534		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit	6	Workload	154 <i>(Hours)</i>	Theory		3	Practice	0	Laboratory	0
		To provide ad of modern ext						urse of study	/ in the theory and	practice
Course Content		parameter est generalized e	imate method stimating equa	s. Logisti ations, the	ic reg e exp	ression, F onential f	Poisson regres	sion, analys ar predictor,	eory and applications is of dependent date link functions, and n.	ata,
Work Placement N/A										
Planned Learning Activities and Teaching Methods		Explana	ation (Presentat	tion), Project E	ased Study	, Individual Study			
Name of Lecturer(s) Prof. İmran KURT ÖMÜRLU		j j								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	40
Final Examination	1	60

Recommended or Required Reading

1	Dobson, A. J., & Barnett, A. (2008). An introduction to generalized linear models. Chapman and Hall/CRC.
2	Myers, R. H., Montgomery, D. C., Vining, G. G., & Robinson, T. J. (2012). Generalized linear models: with applications in engineering and the sciences (Vol. 791). John Wiley & Sons.
3	Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General).
4	Lindsey, J. K. (2000). Applying generalized linear models. Springer Science & Business Media.

Week	Weekly Detailed Course Contents			
1	Theoretical	Exponential Distribution Family and Properties		
2	Theoretical	Exponential Distribution Family and Properties		
3	Theoretical	Basic structure of generalized linear models		
4	Theoretical	Estimation for generalized linear models		
5	Theoretical	Inference for generalized linear models		
6	Theoretical	The basic structure of logistic regression models		
7	Theoretical	Prediction and inference in the logistic regression models		
8	Intermediate Exam	Midterm exam		
9	Theoretical	The basic structure of log-linear models		
10	Theoretical	Prediction and inference in the log-linear models,		
11	Theoretical	Establishing linear and generalized linear model in R, estimation and inference		
12	Theoretical	Establishing a logistic regression model in R		
13	Theoretical	Prediction and inference of a logistic regression model in R		
14	Theoretical	Establishing log-linear models in R, prediction and inference		
15	Theoretical	Literature review and discussion		
16	Final Exam	Final exam		

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	0	3	42
Assignment	1	10	0	10
Individual Work	8	0	2	16
Quiz	14	2	1	42
Midterm Examination	1	20	2	22

Course		Form
Course	IIIIOIIII	I UIIII

Final Examination	1	20	2	22	
Total Workload (Hours)			154		
[Total Work			Hours) / 25*] = ECTS	6	
*25 hour workload is accepted as 1 ECTS					

-		
l ear	nina	Outcomes
Leai	IIIII	Outcomes

Learn	ing Outcomes
1	To learn basic concepts and basic structure of generalized linear model
2	Learning the principles and methods of statistical modeling for generalized linear models
3	To be able to make linear transformations
4	To learn factor interactions, aggregate and aggregate models
5	To be able to establish a generalized linear model using statistical softwares and evaluate these models

Programme Outcomes (Biostatistics Master)

•			
1	To be able to understand the interdisciplinary interaction releated with biostatistics.		
2	to be able to use Theoretical and practical knowledge at the level of expertise.		
3	To be able to nterpret the information by integrating information from different disciplines and create new information		
4	To be able to nalyze the problems encountered by using research methods		
5	to be able to conduct a study as an independent specialist		
6	To be able to formulate solutions for complex unpredictable problems encountered by developing new approaches and taking responsibility.		
7	To be able to resolve problems in environments that require leadership.		
8	To be able to evaluate and direct knowledge and skills with a critical approach at the level of expertise.		
9	To be able to to give statistical advise at the begining stages of preparing health related projects		
10	To be able to get the knowledge and the ability of using statistical packages		

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L5
P1	3
P2	4
P3	3
P4	4
P5	3
P6	4
P7	4
P8	3
P9	3
P10	5