

AYDIN ADNAN MENDERES UNIVERSITY GRADUATE SCHOOL OF HEALTH SCIENCES BIOSTATISTICS BIOSTATISTICS (MEDICAL) BIOSTATISTICS (MEDICAL) MASTER COURSE INFORMATION FORM

Course Title		Multidimensio	nal Data Analy	ysis					
Course Code		BIS540		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	4	Workload	104 <i>(Hours)</i>	Theory	2	Practice	0	Laboratory	0
Objectives of the Course		Description of	dimension rea	duction and r	nachine lea	arning techniqu	ues in multic	limensional data.	
Course Content		Mathematical distance, dimension reduction, singular value decomposition and principal component analysis, multiple dimensional scaling plots, factor analysis, dealing with batch effects, clustering, heatmaps, basic machine learning concepts.							
Work Placement		N/A							
Planned Learning Activities		and Teaching	Methods	Explanation	(Presenta	tion), Demonst	ration, Indiv	idual Study	
Name of Lecturer(s)									

Accoccmont	Mothode	and	Critoria
Assessment	wethous	anu	Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	60	

Recommended or Required Reading

1	Lohnes, P. R. (1971). Multivariate data analysis. J. Wiley.
2	Li, K. C., Jiang, H., Yang, L. T., & Cuzzocrea, A. (Eds.). (2015). Big data: Algorithms, analytics, and applications. CRC Press.
3	Lohnes, P. R. (1971). Multivariate data analysis. J. Wiley.
4	Bühlmann, P., & Van De Geer, S. (2011). Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media.

Week	Weekly Detailed Cour	se Contents
1	Theoretical	General information
2	Theoretical	Data pre-processing techniques
3	Theoretical	Linear Algebra
4	Theoretical	Multivariate Distributions
5	Theoretical	Statistical Inference
6	Theoretical	MANOVA
7	Theoretical	Regression
8	Intermediate Exam	Midterm exam
9	Theoretical	Multiple Regression
10	Theoretical	Principal Component Analysis
11	Theoretical	Factor Analysis
12	Theoretical	Canonical Correlation Analysis
13	Theoretical	Statistical-based Classification Methods
14	Theoretical	Statistical-based Clustering Methods
15	Theoretical	Literature review and discussion
16	Theoretical	Final exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	1	2	42
Assignment	10	0	2	20
Quiz	10	1	1	20
Midterm Examination	1	10	1	11

					Course information Fo	
Final Examination	1		10	1	11	
			Т	otal Workload (Hours)	104	
		[To	tal Workload	(Hours) / 25*] = ECTS	4	
*25 hour workload is accepted as 1 FCTS						

Learn	ning Outcomes	
1	To learn the basic concepts of multivariate data analysis	
2	Learning multivariate data preprocessing methods	
3	To be able to analyze multivariate data with statistical technique	ues
4	Learning the learning methods of statistics	
5	To have knowledge about regression methods	

Programme Outcomes (Biostatistics (Medical) Master)

1	To be able to understand the interdisciplinary interaction releated with biostatistics.
2	to be able to use Theoretical and practical knowledge at the level of expertise.
3	To be able to nterpret the information by integrating information from different disciplines and create new information
4	To be able to nalyze the problems encountered by using research methods
5	to be able to conduct a study as an independent specialist
6	To be able to formulate solutions for complex unpredictable problems encountered by developing new approaches and taking responsibility.
7	To be able to resolve problems in environments that require leadership.
8	To be able to evaluate and direct knowledge and skills with a critical approach at the level of expertise.
9	To be able to to give statistical advise at the begining stages of preparing health related projects
10	To be able to get the knowledge and the ability of using statistical packages

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	4	4	3	4	3
P2	4	4	4	4	3
P3	4	4	4	4	3
P4	3	4	3	3	4
P5	4	4	4	4	5
P6	3	4	4	4	4
P7	3	3	4	3	4
P8	4	4	3	4	4
P9	3	4	4	4	4
P10	3	3	4	4	4