

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Multi		Multidimensio	nal Data Anal	ysis						
Course Code		BiS540 Co		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit	4	Workload	104 (Hours)	Theory	/	2	Practice	0	Laboratory	0
Objectives of the Course Description of dimension red		duction	and	machine lea	arning techniq	ues in multid	imensional data.			
an		Mathematical distance, dimension reduction, singular value decomposition and principal component analysis, multiple dimensional scaling plots, factor analysis, dealing with batch effects, clustering, heatmaps, basic machine learning concepts.						nent g,		
Work Placement N/A										
Planned Learning Activities and Teaching Methods			Explar	natio	n (Presentat	tion), Demonst	tration, Indivi	dual Study		
Name of Lecturer(s) Prof. Mevlüt TÜRE										

Assessment Methods and Criteria				
Method	Quantity	Percentage (%)		
Midterm Examination	1	40		
Final Examination	1	60		

Recommended or Required Reading

- 1 Lohnes, P. R. (1971). Multivariate data analysis. J. Wiley.
- 2 Li, K. C., Jiang, H., Yang, L. T., & Cuzzocrea, A. (Eds.). (2015). Big data: Algorithms, analytics, and applications. CRC Press.
- 3 Lohnes, P. R. (1971). Multivariate data analysis. J. Wiley.
- Bühlmann, P., & Van De Geer, S. (2011). Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media.

Week	Weekly Detailed Course Contents					
1	Theoretical	General information				
2	Theoretical	Data pre-processing techniques				
3	Theoretical	Linear Algebra				
4	Theoretical	Multivariate Distributions				
5	Theoretical	Statistical Inference				
6	Theoretical	MANOVA				
7	Theoretical	Regression				
8	Intermediate Exam	Midterm exam				
9	Theoretical	Multiple Regression				
10	Theoretical	Principal Component Analysis				
11	Theoretical	Factor Analysis				
12	Theoretical	Canonical Correlation Analysis				
13	Theoretical	Statistical-based Classification Methods				
14	Theoretical	Statistical-based Clustering Methods				
15	Theoretical	Literature review and discussion				
16	Theoretical	Final exam				

Workload Calculation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	1	2	42	
Assignment	10	0	2	20	
Quiz	10	1	1	20	
Midterm Examination	1	10	1	11	

Final Examination	1		10	1	11
			To	tal Workload (Hours)	104
			[Total Workload (Hours) / 25*] = ECTS	4
*25 hour workload is accepted as 1 ECTS					

Learn	ing Outcomes
1	To learn the basic concepts of multivariate data analysis
2	Learning multivariate data preprocessing methods
3	To be able to analyze multivariate data with statistical techniques
4	Learning the learning methods of statistics
5	To have knowledge about regression methods

Progra	amme Outcomes (Biostatistics Master)				
1	To be able to understand the interdisciplinary interaction releated with biostatistics.				
2	to be able to use Theoretical and practical knowledge at the level of expertise.				
3	To be able to nterpret the information by integrating information from different disciplines and create new information				
4	To be able to nalyze the problems encountered by using research methods				
5	to be able to conduct a study as an independent specialist				
6	To be able to formulate solutions for complex unpredictable problems encountered by developing new approaches and taking responsibility.				
7	To be able to resolve problems in environments that require leadership.				
8	To be able to evaluate and direct knowledge and skills with a critical approach at the level of expertise.				
9	To be able to to give statistical advise at the begining stages of preparing health related projects				
10	To be able to get the knowledge and the ability of using statistical packages				

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High L1 L2 L3 L4 L5 P1 P2 РЗ P4 P5 P6 P7 P8

P9

P10