

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Advanced Biochemical Ar	nalyses				
Course Code	BYK605	Couse Level	Third Cycle (Do	Third Cycle (Doctorate Degree)		
ECTS Credit 5	Workload 125 (Hours	s) Theory 3	Practice	0	Laboratory	0
Objectives of the Course	Advances in biological sci technologies. It is necessa and basic principles of an selection of suitable devic basic knowledge about ac thinking in the analysis of	ary to have knowledge a alytical / industrial proce es and methods in rese dvanced techniques in b	about these new tesses, in order to arches. The aim of	echnologies reach quali of this cours	s, instrumental me ty reliable results i se is to give the st	thods n udents
Course Content	The role of analytical cher quantitative analysis meth chromatographic techniqu techniques, UV-VIS spect mass spectroscopy and M	nods, the analysis error of ues, electrophoretic tech troscopy, NMR-IR and th	calculations, the s iniques, the theor heir use in bioche	separation a etical basis mistry, imm	and extraction met of spectroscopic	hods,
Work Placement	N/A					
Planned Learning Activi	ties and Teaching Methods	Explanation (Present	tation), Discussio	n		
Name of Lecturer(s)						

Assessment Methods and Criteria

Method		Quantity	Percentage (%	
Midterm Examination		1	40	
Final Examination		1	60	

Recommended or Required Reading

1	Biochemical Methods S sadasivam-a manickam	
2	Metod of biochemical analysis. Clarence H. Suelter	

Week	Weekly Detailed Course Contents				
1	Theoretical	Basic principles and applications of Hypnated techniques such as LC-MS / MS, CE-MS / MS			
2	Theoretical	Basic principles and applications of advanced mass spectrometric techniques; For example, MALDI-TOF, ESI-TOF, SELDI-TOF etc.			
3	Theoretical	Basic principles and applications of multidimensional techniques; i.e., 2D-PAGE, 2D-DIGE, 2D-LC			
4	Theoretical	Basic principles and applications of stable isotope marking techniques; Ex: ICAT, SILAC, etc.			
5	Theoretical	Basic principles and applications of immunostaining techniques; i.e., ELISA, RIA, etc.			
6	Theoretical	Basic principles and applications of Spectral Techniques; For example; Fluorescence, NMR			
7	Theoretical	asic principles and applications of Spectral Techniques; For example; CD, FRET, etc.			
8	Intermediate Exam	dvanced Biochemical Analyses Midterm Exam			
9	Theoretical	Discussion and Seminar			
10	Theoretical	Basic principles and applications of X-ray crystallography			
11	Theoretical	Basic principles and applications of imaging techniques; For example; Cyro M, Immuno fluorescence etc.			
12	Theoretical	Basic principles and applications of microarrays; DNA arrays			
13	Theoretical	Basic principles and applications of microarrays; Protein arrays.			
14	Theoretical	Basic principles and applications of microarrays; Glycoarrays.			
15	Theoretical	Comparison and evaluation of techniques; guided problem solving			
16	Final Exam	Advanced Biochemical Analysis Final Exam			

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	4	2	84	
Midterm Examination	1	18	2	20	

			Course mormation For		
Final Examination	1		19	2	21
Total Workload (Hours)				125	
[Total Workload (Hours) / 25*] = ECTS			5		
*25 hour workload is accepted as 1 ECTS					

Le	earn	ing Outcomes
	1	Ability to understand modern biochemical techniques and gain research experience
	2	To be able to explain the basic principles of modern biochemical instrumental techniques, to understand the operating and application conditions
	3	To be able to understand new developments in instrumentation technology
	4	Ability to gain perspective in quantitative and qualitative evaluation and purification of biomolecules
	5	To be able to understand new diagnostic tools in modern biochemistry laboratories

Progr	ramme Outcomes (Biochemistry (Medical) Doctorate)
1	To have basic theoretical knowledge about biochemistry and to help understanding biochemistry
2	To have the basic laboratory knowledge, apparatus and methods used in biochemistry
3	Analysis: To be able to analyze information critically
4	Synthesis: To be able to synthesize and adapt the knowledge in the field from different directions
5	Evaluation: To critically evaluate research in the field

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5	
P1	5	5	5	5	5	
P2	5	4	4	5	4	
P3	5	5	5	5	5	
P4	4	4	5	4	5	
P5	5	5	4	5	5	