

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Biosensors						
Course Code	BYK622	Couse Leve	Couse Level		Third Cycle (Doctorate Degree)		
ECTS Credit 5	Workload 125 (Hours	Theory	3	Practice	0	Laboratory	0
Objectives of the Course It is aimed to teach that biosensors are analytical measurement systems formed by the combine physicochemical signal transmitter or an optical, electrochemical, thermometric, piezoelectric, no signal transmitter and a biological material, and where and for what purposes the biosensors caused.					nagnetic		
Course Content Biosensor definition, types of biosensors, Calorimetric biosensors, calorimetric biosensor applications, potentiometric and amperometric biosensors, optical biosensors, optical biosensors applications, pieze electric biosensors, Immunosensors, Immunosensors applications.							
Work Placement	N/A						
Planned Learning Activities	and Teaching Methods	Explanation	(Presenta	tion), Discussion	on		
Name of Lecturer(s)							

Assessment Methods and Criteria					
Method	Quantity Percentage (
Midterm Examination	1	40			
Final Examination	1	60			

Recommended or Required Reading

1 biosensors: Jon cooper

2 Biosensors :Rajmohan Joshi,

Week	Weekly Detailed Cour	se Contents			
1	Theoretical	Identification of biosensor			
2	Theoretical	Brief historical development of biosensors			
3	Theoretical	Biosensors according to signal generating species			
4	Theoretical	Biomolecules used in biosensors and immobilization methods			
5	Theoretical	Enzyme based amperometric biosensor systems			
6	Theoretical	Enzyme based potentiometric biosensor systems			
7	Theoretical	Enzyme based optical biosensor systems			
8	Intermediate Exam	Biosensors midterm exam			
9	Theoretical	Enzyme based calorimetric biosensor systems			
10	Theoretical	Inhibition based biosensor systems			
11	Theoretical	Organic phase biosensor systems			
12	Theoretical	Microbial biosensors			
13	Theoretical	Biosensors in food analysis			
14	Theoretical	Biosensors in environmental analysis			
15	Theoretical	Current uses of biosensors in medicine			
16	Final Exam	Biosensors final exam			

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	4	2	84		

Midterm Examination	1	18	2	20	
Final Examination	1	19	2	21	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS 5					
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes					
1	To be able to examine and compare the advantages / disadvantages of biosensors				
2	To be able to evaluate, compare and interpret research results for biosensors				
3	Understanding what a biosensor is				
4	Learn how to prepare a biosensor				
5	Obtaining information about signal transduction systems used in biosensors				

Prog	ramme Outcomes (Biochemistry (Medical) Doctorate)
1	To have basic theoretical knowledge about biochemistry and to help understanding biochemistry
2	To have the basic laboratory knowledge, apparatus and methods used in biochemistry
3	Analysis: To be able to analyze information critically
4	Synthesis: To be able to synthesize and adapt the knowledge in the field from different directions
5	Evaluation: To critically evaluate research in the field

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4 ¶	L5
P1	5	5	5	5	5
P2	4	4	4	4	4
P3	5	4	5	5	5
P4	4	5	4	4	5
P5	5	5	5	5	4

