

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Regenerative Tissue Engineering							
Course Code	BYK625		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 3	Workload	75 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course	To teach the b cells with each				neering, espec	ially by emp	phasizing the intera	action of
Course Content	skeletons in tis	sue engineer n cells in rege enviroments	ing, regeneration of b	ative medic one and c	cine and applic artilage tissues	ation areas s, bone and	ace of different stru of regenerative m cartilage cell prod (eg, a single layer,	edicine, uction in
Work Placement N/A								
Planned Learning Activities and Teaching Methods		Explanation	(Presenta	tion), Discussi	on			
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity Percentage (%)			
Midterm Examination	1	40		
Final Examination		1	60	

Recommended or Required Reading

1	Fundamentals of Tissue Engineering and Regenerative Medicine: Ulrich Meyer, Jörg Handschel, Hans Peter Wiesmann
2	Tissue Engineering in Regenerative Medicine: Harold S. Bernstein

Week	Weekly Detailed Course Contents					
1	Theoretical	Brief history and current position of tissue engineering course				
2	Theoretical	ntroduction to basic cell and tissue biology and concepts				
3	Theoretical	Examples of tissue engineering from nature: Embryogenesis and development				
4	Theoretical	Embryonic and adult stem cells				
5	Theoretical	Remodeling and wound healing				
6	Theoretical	Tissue regeneration				
7	Theoretical	Tissue scaffolding, material selection, production and properties				
8	Intermediate Exam	Regenerative Tissue Engineering Midterm Exam				
9	Theoretical	Factors controlling cell and tissue growth and differentiation; Growth factors, Extracellular matrix				
10	Theoretical	Intercellular interaction; Receptor / ligand interactions Cell-biomaterial interactions				
11	Theoretical	Cellular mechanics				
12	Theoretical	Gene expression in cells				
13	Theoretical	Bioreactor design and advanced devices				
14	Theoretical	Tissue engineering applications: - Bone, cartilage, vascular grafts - Heart, liver, nerve regeneration				
15	Theoretical	Biological, physical and chemical limitations of tissue engineering systems				
16	Final Exam	Regenerative Tissue Engineering Final Exam				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	1	2	42
Midterm Examination	1	14	2	16
Final Examination	1	15	2	17
Total Workload (Hours)				
[Total Workload (Hours) / 25*] = ECTS				
*25 hour workload is accepted as 1 ECTS				

Learning (Outcomes
------------	----------

1	To teach basic definitions and concepts in cell and tissue engineering, stem cell, biodegradable scaffold and cell-biomaterial interactions				
2	 2 Examination of the basic components of tissue engineering, selection, production and evaluation methods of these components and their potential clinical applications 3 To gain the ability of researching, analyzing, comparing and criticizing the existing methods and proposing alternative solutions. 				
3					
4	To be able to distinguish the interdisciplinary characteristics of clinical and research methods and examination of successful working examples between medical doctors, basic scientists and engineers				
5	Discussion of ethical values ??in tissue engineering with examples				

Programme Outcomes (Biochemistry (Medical) Doctorate)

1 To have basic theoretical knowledge about biochemistry and to help understanding biochemistry						
2 To have the basic laboratory knowledge, apparatus and methods used in biochemistry						
2 Analysis: To be able to analyze information critically						

- 3 Analysis: To be able to analyze information critically
- 4 Synthesis: To be able to synthesize and adapt the knowledge in the field from different directions
- 5 Evaluation: To critically evaluate research in the field

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	
P1	5	5	5	5	5	
P2	4	5	5	4	5	
P3	5	4	5	5	4	
P4	4	4	4	4	5	
P5	5	5	5	5	4	

