

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Biopolymers and Biomateria		als						
Course Code	BYK627		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 5	Workload	125 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course	vill be defined sized.	at a basic	level and the	eir importance	in terms of a	application areas a	nd uses	
Course Content Basic definitions, Metallic b Polymers used as biomate Biomaterials, Biodegradabl soft tissue work, Protection		d as biomater Biodegradable	ials, Steriliz e polymeric	ation, Surfa biomaterial	ce derivatizati s, Biological b	on for Bioco	mpatibility, Compo	site
Work Placement N/A								
Planned Learning Activitie	s and Teaching	Methods	Explanation	on (Presenta	tion), Discuss	ion		
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)		
Midterm Examination		1	40	
Final Examination		1	60	

Recommended or Required Reading

1	Biopolymers:Alen Walton
2	biopolimers:R. M. Johnson, L. Y. Mwaikambo, N. Tucker
3	Biopolymers and Biomaterials, Aneesa Padinjakkara, Aparna Thankappan, Fernando Gomes Souza, Jr., Sabu Thomas

Week	Weekly Detailed Course	se Contents
1	Theoretical	Definition and classification of polymers and biopolymers
2	Theoretical	Structure, physical, chemical and biological properties of polymers and biopolymers
3	Theoretical	Polymerization Mechanisms (Ionic Polymerization)
4	Theoretical	Polymerization Mechanisms (Radical Polymerization)
5	Theoretical	Biological and industrial production and synthesis of biopolymers
6	Theoretical	Definition and classification of bio and biocompatible materials
7	Theoretical	Biocompatibility, bioactivity, bioinertity
8	Intermediate Exam	Biopolymers and Biomaterials Midterm Exam
9	Theoretical	Polymeric biomaterials
10	Theoretical	Biodegradable polymers
11	Theoretical	Immunity
12	Theoretical	Applications of biopolymers and biomaterials (hydrogels)
13	Theoretical	Applications of biopolymers and biomaterials (Dental Applications)
14	Theoretical	Applications of biopolymers and biomaterials (Applications in cardiovascular systems)
15	Theoretical	Applications of biopolymers and biomaterials (Knee, Hip etc. Implants and prostheses)
16	Final Exam	Biopolymers and Biomaterials Final Exam

Workload Calculation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	4	2	84	
Midterm Examination	1	18	2	20	
Final Examination	1	20	1	21	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 ECTS					

Learr	ning Outcomes
1	Understanding the natural and synthetic production and synthesis mechanisms of polymers and biopolymers
2	To understand how to use polymer and biopolymers in biomaterial
3	Comprehension of the relationships between the structures of various biomaterials (implants, prostheses, etc.) and their uses
4	Understanding the physical, chemical and biological properties of polymers and biopolymers
5	Learning of polymer, biopolymer, biomaterial and related concepts

Programme Outcomes (Biochemistry (Medical) Doctorate)

1	To have basic theoretical knowledge about biochemistry and to help understanding biochemistry
---	---

- 2 To have the basic laboratory knowledge, apparatus and methods used in biochemistry
- 3 Analysis: To be able to analyze information critically
- 4 Synthesis: To be able to synthesize and adapt the knowledge in the field from different directions
- 5 Evaluation: To critically evaluate research in the field

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	4	5	4	4	4
P3	5	4	5	5	4
P4	5	5	4	4	5
P5	4	4	5	5	5

