

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

ourse Title Proteomics and Metabolomics: Overview and Significance of Medicine								
Course Code	BYK630	Couse Leve	Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 3	Workload 75 (Hou	rs) Theory	3	Practice	0	Laboratory	0	
Objectives of the Course thinking about proteins, how these molecules a applications in other sc		s to enable stude proteomes are p re related to each ences.	ents to learn proteins pro n other and	n the basic cor duced by a ce how they form	icepts of Pro Il or organisr a biological	teomics, to have a n under certain co system and prote	analytical nditions, omics	
Course Content	Transcriptional regulati pure and complex of bi methods and mass spe	on, genetic and p ological materials ctrometry, 2D ele	rotein inter , Protein ex ectrophores	actions, tools a xpression and sis	and analytics purification.	s, Sample prepara Liquid chromatogr	tion of aphic	
Work Placement	N/A							
Planned Learning Activities	and Teaching Methods	Explanation	(Presenta	tion), Discussio	on			
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	40
Final Examination	1	60

Recommended or Required Reading

1	Proteomic and Metabolomic Approaches to Biomarker Discovery:Haleem J Issaq
2	The Handbook of Metabonomics and Metabolomics:ohn C. Lindon, Jeremy K. Nicholson, Elaine Holmes
3	Introduction to Proteomics: Daniel C. Lieble

Week	Weekly Detailed Course Contents					
1	Theoretical	Transition from Genomics to Proteomics: Functional genomics at DNA and RNA level; Proteomics' field of activity; Proteomics challenges				
2	Theoretical	General Properties of Proteins: Structure and Function of Proteins				
3	Theoretical	Discrimination techniques used in proteome analysis (I): Principles of two-dimensional gel electrophoresis; Use of two-dimensional gel electrophoresis in proteomics				
4	Theoretical	Discrimination techniques used in proteome analysis (II): Principles of liquid chromatography in proteomics; Multidimensional liquid chromatography				
5	Theoretical	Techniques used for protein identification (I): Protein identification by antibodies; Determination of protein sequences by chemical degradation				
6	Theoretical	Techniques used in protein identification (II): Use of mass spectrometry in proteomics; protein identification using mass spectrometry information				
7	Theoretical	Techniques used for protein determination: Quantitative proteomics with standard two- dimensional gel; quantitative proteomics by mass spectrometry				
8	Intermediate Exam	Proteomics and Metabolomics: Overview and Significance of Medicine Midterm Exam				
9	Theoretical	Proteomics and analysis of protein sequences: Protein families and evolutionary relationships; Basic principles of protein sequence comparison				
10	Theoretical	Structural proteome analysis: The importance of protein structures in proteomics; Techniques for understanding protein structures; Comparison of protein structures				
11	Theoretical	Protein-protein interactions and proteomics: Principles of protein interaction analysis; Protein interaction maps; Proteins and small molecules				
12	Theoretical	The role of protein modifications in proteome analysis: Phosphoproteomics, an overview of protein phosphorylation; Glycoproteomics, the role of glycoproteins in the cell				
13	Theoretical	Protein chips and functional proteome analysis: Different types of protein chips; The emergence of protein chip technology				
14	Theoretical	Proteomic Applications (I): Medical proteomics, disease diagnosis; Pharmaceutical proteomics, drug development				
15	Theoretical	Proteomics Applications (II): Proteomics and plant biotechnology; Proteomics for the analysis of genetically modified plants				
16	Final Exam	Proteomics and Metabolomics: Overview and Significance of Medicine Final Exam				

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	1	2	42
Midterm Examination	1	14	2	16
Final Examination	1	15	2	17
Total Workload (Hours)				
[Total Workload (Hours) / 25*] = ECTS 3				3
*25 hour workload is accepted as 1 ECTS				

Learning Outcomes

1	To be able to learn that the proteome is the proteins produced by a cell or organism under certain conditions
2	To be able to understand how proteins interact and form a biological system
3	Describe the proteome as sequence, structure, abundance, location, arrangement, interactions and biochemical functions
4	Learning of protein separation, identification and determination principles
5	Learning basic information about proteomics database

Programme Outcomes (Biochemistry (Medical) Doctorate)

1	To have basic theoretical knowledge about biochemistry and to help understanding biochemistry
2	To have the basic laboratory knowledge, apparatus and methods used in biochemistry
3	Analysis: To be able to analyze information critically
4	Synthesis: To be able to synthesize and adapt the knowledge in the field from different directions
5	Evaluation: To critically evaluate research in the field

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	4	5	4	5	4
P3	5	4	5	4	4
P4	4	5	4	5	5
P5	5	5	5	5	5

