

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Energy Conve	Energy Conversion in Thermal Engines						
Course Code		MME603		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit	9	Workload	228 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course Purpose of this course is to advance knowledge the graduate student about thermal engines and to their graduation study.					d to help				
Course Content Units and basic thermodyl and specifications, illustra steady state flow work pro		tions, illustrate	solar energy	and powe	er systems cycl				
Work Placeme	ent	N/A							
Planned Learning Activities and Teaching Methods		Explanation Individual St			ration, Disc	ussion, Case Stud	у,		
Name of Lectu	urer(s)								

Prerequisites & Co-requisities

Language Requisite

Assessment Methods and Criteria	a		
Method		Quantity	Percentage (%)
Midterm Examination		1	15
Final Examination		1	60
Quiz		4	15
Assignment		5	5
Term Assignment		1	5

Recommended or Required Reading

2

1	1. Energy Conversion,	Rainer Decher,	Oxford	University Press,	1994.
---	-----------------------	----------------	--------	-------------------	-------

2. Energy Conversion-The E-book Kenet C. Weston, 1992.

Yes

Week	Weekly Detailed Course Contents						
1	Theoretical	Units, Basic thermodynamic concepts (Temperature, Pressure, Density, Specific weight, Ideal gas, Heat, Work, Kinetic, Potential and Internal Energy, Specific heat, Enthalpy, Efficiency, Effectiveness), State Changes of Ideal Gases.					
2	Theoretical	Units, Basic thermodynamic concepts (Temperature, Pressure, Density, Specific weight, Ideal gas, Heat, Work, Kinetic, Potential and Internal Energy, Specific heat, Enthalpy, Efficiency, Effectiveness), State Changes of Ideal Gases.					
3	Theoretical	Energy and power, Energy sources, Users demand, Fossil fuels and compositions, Power production in combustion, Solar energy, Mechanic power sources.					
4	Theoretical	Efficiency, Process performance, Conversion of heat to mechanical power, Power systems, Heat upgrade cycles, Power parameters in heat engines.					
5	Theoretical	Properties of gases and gas mixtures, JANAF thermochemical data tables, Combustion chemistry, Heat formation, Formation enthalpy of reactants and products, Adiabatic flame temperature, Combustion in constant volume					
6	Theoretical	One-dimensional compressible flow, Nozzles and diffusers.					
7	Theoretical	Steady flow work processes, Work interactions with flowing media, Turbines and compressors, Thrust power.					
8	Intermediate Exam	Midterm Exam					
9	Theoretical	Heat limited cycles, Brayton cycle analysis, Closed Brayton cycle, Performance characteristic, Regeneration, Ericsson cycle, Heat and work interaction					
10	Theoretical	Sıcaklık sınırlı çevrimler, Brayton çevrimi analizi, Kapalı Brayton çevrimi, Performans karakteristikleri, Rejenerasyon, Ericsson çevrimi, Isı ve iş etkileşimi					
11	Theoretical	Fluid property limited cycles, Thermodynamic properties of vapor, Vapor cycles, Cycle combinations, Critical cycle.					
12	Theoretical	One-dimensional compressible flow, Nozzles and diffusers.					
13	Theoretical	Steady flow work processes, Work interactions with flowing media, Turbines and compressors, Thrust power.					

14 Final	Exam	Final Exam
----------	------	------------

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	16	5	3	128		
Assignment	5	0	3	15		
Term Project	1	15	10	25		
Quiz	4	3	1	16		
Midterm Examination	1	20	2	22		
Final Examination	1	20	2	22		
Total Workload (Hours)						
[Total Workload (Hours) / 25*] = ECTS						

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

1	To define and make solution of the Units and Basic thermodynamic concepts.
2	To apply on the problem of First and second law of thermodynamics
3	To arrange energy sources, Fuel and specifications.
4	To arrange and make problem of the solar energy and Power systems
5	To apply problem of cycles, Cycle performance parameters and steady state flow work processes.
6	To summarize the producing of work and power.

Programme Outcomes (Mechanical Engineering (English) Doctorate)

i i ogi	annie Outcomes (Mechanical Englisening (English) Doctorate)
1	1. In Mathematics, natural sciences and mechanical engineering, department has the sufficient infrastructure; the ability to use the theoretical and practical information for engineering solutions
2	2. The ability to identify, define, and solve the formula for complex engineering problems; the ability to select and apply for the appropriate analytical methods and modelling techniques
3	3. To meet desired needs of a system, system component, or process, analysing and designing skill under realistic constraints; in this respect, the ability to apply the methods of modern design
4	4. The ability to use and choose modern techniques and tools for required engineering applications and; the ability to use information technology effectively
5	5. The ability to design the experiment, collect the data for the experiment and interpret to analysing results
6	6. The ability to use computer software and hardware information, access to information and other information sources
7	7. The ability to work individually and with multidisciplinary teams effectively, taking responsibility self-confidence for complex situations
8	8. The ability to communicate with foreign colleagues by having high level of foreign language knowledge in the field of engineering
9	9. Monitoring the science and technology developments and the ability to renew itself with innovative ideas constantly
10	10. Professional and ethical responsibility awareness
11	11. Having an adequate information and awareness in the subjects of occupational safety, occupational health, social security rights, quality control and management issues of environmental protection
12	12. The ability to appreciate the effects of engineering solutions and applications in universal and social dimensions
13	13. The ability to be enlightened to the experts or non-expert audience groups on the issues related with engineering problems and solutions written and oral
14	14. The ability to have adequate knowledge and skills in the project development and application, manage the activities planning, including the projects to the employees having the responsibility of the project by increasing vocational awareness

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6
P1	5	5	4	5	4	3
P2	4	4	4	5	4	5
P3	5	4	4	5	4	5
P4	5	4	5	4	5	5
P5	3	5	4	4	5	5
P6	4	5	4	5	5	4
P7	5	5	5	5	5	4
P8	5	4	5	5	4	4

Course	Infor	mation	Form

P9	5	4	3	5	5	5
P10	5	5	3	3	3	4
P11	4	5	5	5	5	4
P12	3	5	5	4	5	5
P13	4	5	5	4	5	5
P14	5	4	4	5	5	4