

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Spectral Imaging								
Course Code MME622		Couse Level		Third Cycle (Doctorate Degree)				
ECTS Credit 9	Workload	225 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course	The aim of the course is to teach principles and applications of advanced digital image processing techniques for spectral image filtering, segmentation, compression, and registration							
Course Content Principles and applications of advanced digital image processing techniques for spectral image filtering, segmentation, compression, and registration					filtering,			
Work Placement N/A								
Planned Learning Activities and Teaching Methods Explanation (Presentation), Discussion								
Name of Lecturer(s)								

Prerequisites & Co-requisities

Language Requisite Yes

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	40				
Final Examination	1	60				

Recommended or Required Reading

- Geometric Partial Differential Equations and Image Analysis, YAZAR: Guillermo Sapirodate BASIM: February 2006, Cambridge Press ISBN: 9780521685078
- 2 Image Processing: Principles and Applications YAZARLAR: Tinku Acharya, Ajoy K. Ray BASIM: October 2005, Wiley ISBN: 978-0-471-71998-4

Week	Weekly Detailed Cour	se Contents
1	Theoretical	Partial Differential Equations for Filtering (Edge Stopping, Directional, Isotropic and Anisotropic Diffusion Filters)
2	Theoretical	Model based segmentation (Active Contours)
3	Theoretical	Explicit (Lagrangian) Geometric Curve and Surface Evaluation: Snakes, Applications and Limitations
4	Theoretical	Implicit (Eulerian) Geometric Curve and Surface Evaluation: Level Sets, Applications and Limitations
5	Theoretical	Variational Level Set Methods (Fast Marching)
6	Theoretical	Geodesic Curves and Minimal Surfaces (Minimal path and centerline extraction techniques)
7	Theoretical	Statistical Shape Modeling of Image and Volume Data (Shape representation, Shape Model Construction, Appearance models, Shape correspondence, Applications)
8	Intermediate Exam	Midterm exam
9	Theoretical	Texture extraction (Co-occurence matrices, sum and different histograms, wavelets, curvelets, contourlets, brushlets)
10	Theoretical	Image Registration Techniques
11	Theoretical	mage Compression Techniques (Parameters of image compression, drawbacks of various methods, advantages of wavelet-based compression techniques, standard and new image formats, strength of new compression techniques
12	Theoretical	Hyper-spectral and Multi-spectral imaging
13	Theoretical	Multi-dimensional Processing (Multi Planar Reconstruction, Curved and Oblique Sectioning, Volume Rendering, Surface Rendering, Maximum Intensity Projection)
14	Theoretical	Image Mining and Content Based Image Retrieval
15	Theoretical	Image Mining and Content Based Image Retrieval

16	Final Exam	Final exam

Workload Calculation					
Activity	Quantity	/	Preparation	Duration	Total Workload
Lecture - Theory	14		9	4	182
Assignment	1		5	1	6
Project	2		8	3	22
Midterm Examination	1		5	3	8
Final Examination	1		5	2	7
	225				
[Total Workload (Hours) / 25*] = ECTS					9
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes

- 1 Understanding the role of partial differential equations in image filtering
- 2 Understanding the role of partial differential equations in image segmentation
- 3 Understanding advanced techniques and appplications of image registration
- 4 Understanding digitial image compression standards and techniques
- 5 Having advanced knowledge and hands on experience on image processing techniques and applications

Programme Outcomes (Mechanical Engineering (English) Doctorate)

- 1. In Mathematics, natural sciences and mechanical engineering, department has the sufficient infrastructure; the ability to use the theoretical and practical information for engineering solutions
- 2. The ability to identify, define, and solve the formula for complex engineering problems; the ability to select and apply for the appropriate analytical methods and modelling techniques
- 3. To meet desired needs of a system, system component, or process, analysing and designing skill under realistic constraints; in this respect, the ability to apply the methods of modern design
- 4. The ability to use and choose modern techniques and tools for required engineering applications and; the ability to use information technology effectively
- 5. The ability to design the experiment, collect the data for the experiment and interpret to analysing results
- 6. The ability to use computer software and hardware information, access to information and other information sources
- 7. The ability to work individually and with multidisciplinary teams effectively, taking responsibility self-confidence for complex situations
- 8. The ability to communicate with foreign colleagues by having high level of foreign language knowledge in the field of engineering
- 9. Monitoring the science and technology developments and the ability to renew itself with innovative ideas constantly
- 10 10. Professional and ethical responsibility awareness
- 11. Having an adequate information and awareness in the subjects of occupational safety, occupational health, social security rights, quality control and management issues of environmental protection
- 12 The ability to appreciate the effects of engineering solutions and applications in universal and social dimensions
- 13. The ability to be enlightened to the experts or non-expert audience groups on the issues related with engineering problems and solutions written and oral
- 14. The ability to have adequate knowledge and skills in the project development and application, manage the activities planning, including the projects to the employees having the responsibility of the project by increasing vocational awareness

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2:Low, 3:Medium, 4:High, 5: Very High

	LI	LZ	LS	L4	LO
P1	3	3	5	5	3
P2	4	4	4	4	4
P3	5	5	3	3	5
P4	5	5	3	3	5
P5	4	4	4	4	4
P6	3	3	5	5	3
P7	3	3	5	5	3
P8	4	4	4	4	4
P9	5	5	3	3	5
P10	5	5	3	3	5

1.2

P11	4	4	4	4	4
P12	3	3	5	5	4
P13	4	4	5	5	3
P14	5	5	4	4	4

