

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Optimization							
Course Code		EFN565		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	5	Workload	125 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the	he Course	various optimi	zation method	ds and dealin	g particula	rly with the ap	olication exa	aching of standard amples in structura bjectives of the co	al
						mathematical ers and its app		ng techniques, Inti	roduction
Work Placement N/A									
Planned Learning Activities and Teaching Methods		Explanation	(Presenta	tion), Discussi	on				
Name of Lecturer(s) Lec. Yilmaz ERDEM									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	60	

Recommended or Required Reading

1 Lecture Notes Supplementary Book(s): Related publications

Week	Weekly Detailed Cou	urse Contents			
1	Theoretical	Introduction to optimization. Basic descriptions and concepts.			
2	Theoretical	Design space, constraint surfaces, objective function. Statement of an optimization problem.			
3	Theoretical	General view of mathematical programming techniques.			
4	Theoretical	Classical Optimization Techniques (Calculus methods), linear programming, non linear programming, quadratic program-ming, geometric programming, dynamic programming, integer programming, network methods (CPM, PERT) etc.			
5	Theoretical	Classical Optimization Techniques: Single variable optimization techniques and its application			
6	Theoretical	Classical Optimization Techniques: Multi variable optimization techniques with no constraints and its application			
7	Theoretical	Various applications. Giving the term-assignment.			
8	Final Exam	Mid-term exam			
9	Theoretical	Classical Optimization Techniques: Multi variable optimization techniques with equality constraints and its application			
10	Theoretical	Classical Optimization Techniques: Multi variable optimization techniques with inequality constraints and its application			
11	Theoretical	Optimization with Lagrange multipliers and its application.			
12	Theoretical	Linear Programming: Simplex Method			
13	Theoretical	Applications			
14	Theoretical	General Assesment			
15	Theoretical	General Assesment			
16	Final Exam	Final			

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	2	3	70
Individual Work	3	5	4	27
Midterm Examination	1	10	1	11

					Course mormation Form
Final Examination	1		16	1	17
Total Workload (Hours)				125	
			[Total Workload	(Hours) / 25*] = ECTS	5
*25 hour workload is accepted as 1 ECTS					

Learr	ning Outcomes
1	To have a knowledge on optimization concept and fundamental principles
2	To be able relate engineering problems with mathematical modellings
3	To analyze enginnering problems by using mathematical modellings
4	To recognize informed and suitable results with optimization techniques
5	To develope optimum solution from alternative solutions

Programme Outcomes (Economics and Finance Interdisciplinary Master)

1	To be able to use the basic concepts in the field of economics and finance correctly
2	To be able to comprehend philosophical, social, historical and psychological principles influencing economics and finance
3	To be able to analyze economical and financial events theoretically and empirically
4	To be able to evaluate any economical and financial problem in accordance with scientific principles
5	To be able to prepare solutions for an economical or financial problem cooperatively in accordance with principles and criteria
6	To be able to follow contemporary implementations, and national and international academic publications
7	To be able to prioritize scientific methods and ethical principles in economics and finance while considering and implementing field specific professional issues
8	To be willing to do scientific research in the field of economics and finance
9	To be able to create value for economics and finance profession as a professional identity

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	4	5	5	4
P2	4	3	4	4	5
P3	3	5	3	3	4
P4	5	4	5	5	3
P5	4	3	4	4	5
P6	3	5	3	3	4
P7	5	4	5	5	3
P8	4	3	4	4	5
P9	3	5	3	3	4