

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Optimization							
Course Code	BFN565		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 5	Workload	125 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course The concept of optimization, fundamental principles related with the topic, teaching of standard level various optimization methods and dealing particularly with the application examples in structural engineering area proceeding from general expressions constitute the basic objectives of the course.						ıl		
Course Content Classical Optimization Techniques, General view of mathematical programming techniques, Introduction to optimization, Optimization with Lagrange multipliers and its application						oduction		
Work Placement	N/A							
Planned Learning Activities and Teaching Methods				n (Presenta	tion), Discussi	on		
Name of Lecturer(s)	Lec. Yılmaz E	RDEM						

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	40			
Final Examination	1	60			

Recommended or Required Reading

1 Lecture Notes Supplementary Book(s): Related publications

Week	Weekly Detailed Cour	ekly Detailed Course Contents						
1	Theoretical	Introduction to optimization. Basic descriptions and concepts.						
2	Theoretical	Design space, constraint surfaces, objective function. Statement of an optimization problem.						
3	Theoretical	General view of mathematical programming techniques.						
4	Theoretical	Classical Optimization Techniques (Calculus methods), linear programming, non linear programming, quadratic program-ming, geometric programming, dynamic programming, integer programming, network methods (CPM, PERT) etc.						
5	Theoretical	Classical Optimization Techniques: Single variable optimization techniques and its application						
6	Theoretical	Classical Optimization Techniques: Multi variable optimization techniques with no constraints and ts application						
7	Theoretical	Various applications. Giving the term-assignment.						
8	Intermediate Exam	Midterm Exam						
9	Theoretical	Classical Optimization Techniques: Multi variable optimization techniques with equality constraints and its application						
10	Theoretical	Classical Optimization Techniques: Multi variable optimization techniques with inequality constraints and its application						
11	Theoretical	Optimization with Lagrange multipliers and its application.						
12	Theoretical	Linear Programming: Simplex Method						
13	Theoretical	Applications						
14	Theoretical	General Assesment						
15	Theoretical	General Assesment						
16	Final Exam	Final Exam						

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	2	3	70
Individual Work	7	2	2	28
Midterm Examination	1	10	1	11

Final Examination	1		15	1	16
	Total Workload (Hours) 125				125
			[Total Workload (Hours) / 25*] = ECTS	5
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes						
1	To have a knowledge on optimization concept and fundamental principles					
2	To be able relate engineering problems with mathematical modellings					
3	To analyze enginnering problems by using mathematical modellings					
4	To recognize informed and suitable results with optimization techniques					
5	To develope optimum solution from alternative solutions					

rogr	amme Outcomes (Economics - Finance and Banking Interdisciplinary Master's Without Thesis)				
1	To be able to use correctly the basic concepts in the field of economics, finance and banking				
2	To be able to comprehend philosophical, social, historical and psychological principles influencing economics, finance and banking				
3	To be able to analyze economical, financial and bank-related events theoretically and empirically				
4	To be able to evaluate any economical, financial or banking-related problem in accordance with scientific principles				
5	To be able to prepare solutions for an economical, financial or banking-related problem cooperatively in accordance with principles and criteria				
6	To be able to follow contemporary implementations, and national and international academic publications in economics, finance and banking				
7	To be able to prioritize scientific methods and ethical principles in economics, finance and banking while considering and implementing field specific professional issues				
8	To be willing to do scientific research in the field of economics, finance and banking				
9	To be able to create value for economics-finance and banking profession as an occupational identity				

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	4	3	5	2	4
P2	5	3	4	4	4
P3	5	3	4	4	2
P4	2	5	4	5	5
P5	5	4	4	2	3
P6	4	4	2	5	3
P7	5	4	5	3	3
P8	5	5	3	3	5
P9	5	5	3	4	4

