

AYDIN ADNAN MENDERES UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES LANDSCAPE ARCHITECTURE LANDSCAPE ARCHITECTURE LANDSCAPE ARCHITECTURE MASTER COURSE INFORMATION FORM

Course Title		Environmental Modeling in Landscape Planning							
Course Code		ZPM535		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8		Workload	200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		Description of the environmental modelling techniques in landscape analysis and the context of current methods. Transmission of theory of integration of the modelling outputs into landscape planning and management policies.							
Course Content		Revision of the techniques in data processing and coversion applied to modelling applications Identifiying different environmental modelling approaches							
Work Placement		N/A							
Planned Learning Activities an		and Teaching	Methods	Explanation	(Presentat	tion), Project B	ased Study,	Individual Study	
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	40
Final Examination	1	60

Recommended or Required Reading

1	Agarwal, C., Green, G.M., Grove, J.M., Evans, T.P. and Schweik, C.M., 2002, A Review and Assessment of Land-Use Change Models: Dynamics of Space, Time, and Human Choice, Gen. Tech. Rep., NE-297, Newton Square, PA (USDA, Forest Service, Northern Research Station).
2	Batty, M., 1981, Urban Models, Quantitative Geography: a British View, Wrigley, N. and Bennett, R. J. (Eds.)): Routledge and Kegan Paul, London,419.
3	Clarke, K.C., Hoppen, S. and Gaydos, L., 1996, "Methods and Techniques for Rigorous Calibartion of a Cellular Automaton Model of Urban Growth",p://www.ncgia.ucsb.edu/projects/gig/Pub/SLEUTHPapers_Nov24/Clark e_Hoppen_Gaydos_1996.pdf
4	Clarke, K.C., Hoppen, S. and Gaydos, L., 1997, A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area, Environment and Planning B: Planning and Design, 24(2):247–261.
5	EPA, 2000, "Projecting Land-Use Change: A Summary of Models for Assessing the Effects of Community Growth and Change on Land-Use Patterns", U.S.EPA/600/R-00/098, Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, 260p
6	Erdoğan, N., 2011, İzmir ili Örneğinde Peyzaj Değişim Senaryolarına Yönelik Modelleme Yaklaşımı: CLUE-s, Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Peyzaj Mimarlığı Anabilim Dalı, İzmir, 200s
7	Haase, D. and Schwarz, N., 2009, Simulation Models on Human–Nature Interactions in Urban Landscapes: A Review Including Spatial Economics, System Dynamics, Cellular Automata and Agent-based Approaches, Living Reviews in Landscape Research, 3(2):1-45
8	Lambin, E.F., 2004, Modelling Land-Use Change, 245-254, Environmental Modelling: Finding Simplicity in Complexity, Wainwright, J. and Mulligan, M. (Eds.), John Wiley & Sons, London, 430p
9	Tanrıöver, A.A., 2011, Adana Kentsel Gelişiminin Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Kullanılarak Modellenmesi, Doktora Tezi,Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Peyzaj Mimarlığı Anabilim Dalı, Adana, 203s

Week	Weekly Detailed Course Contents				
1	Theoretical	Introduction to course: content, reason, importance, process method and needs.			
2	Theoretical	Introduction to Environmental Modelling			
3	Theoretical	Environmental Modelling Approaches			
4	Theoretical	Environmental Modelling Approaches			
5	Theoretical	Environmental Modelling Approaches			
6	Theoretical	Environmental Modelling in Landscape Planning			
7	Theoretical	Environmental Modelling in Landscape Planning			
8	Intermediate Exam	Midterm exam			
9	Theoretical	Describing model data input requirements			
10	Theoretical	Preparing the data layers required for the model			
11	Theoretical	Scenario creation in environmental modeling			
12	Theoretical	Scenario creation in environmental modeling			

13	Theoretical	Evaluation and interpretation of model outputs
14	Theoretical	Evaluation and interpretation of model outputs
15	Theoretical	Evaluation and interpretation of model outputs
16	Theoretical	Final exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	8	3	154	
Midterm Examination	1	20	1	21	
Final Examination	1	24	1	25	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accounted as 1 ECTS					

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

	-
1	Having knowledge about modeling techniques used for different scales in landscape analysis and current methods
2	learns the context of environmental modelling techniques
3	learns the logic of environmental modellling
4	to be able to apply environmental modelling techniques
5	to be able to create scenarious for future in landscape planning

Programme Outcomes (Landscape Architecture Master)

1	e	
2	е	
3	е	
4	е	
5	е	

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	2	2	2	2	2
P2	5	5	5	5	5
P3	5	5	5	5	5
P4	5	5	5	5	5
P5	1	1	1	1	1

