

AYDIN ADNAN MENDERES UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES LANDSCAPE ARCHITECTURE LANDSCAPE ARCHITECTURE LANDSCAPE ARCHITECTURE MASTER COURSE INFORMATION FORM

Course Title		Spatial Analys	sis Techniques	s of Landscap	pes				
Course Code		ZPM542		Couse Leve		Second Cycle	(Master's De	gree)	
ECTS Credit	8	Workload	200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of	the Course	This course a and organizat	ims to explain ion of the land	the theory ar lscape that ca	nd different an be used	practical skills in landscape	s for the analy planning studi	sis of the spatial es.	structure
Course Conte	nt	Demonstration content of spa	n of some of th tial analysis te	ne basic anal echniques an	ysis that ca d how to pe	in be used in l erform various	andscape plar spatial analys	nning by explaini sis.	ng the
Work Placeme	ent	N/A							
Planned Lear	ning Activities	and Teaching	Methods	Explanation Study, Indivi	(Presentat idual Study	ion), Demonst	ration, Case S	Study, Project Ba	sed

Name of Lecturer(s)

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	30
Final Examination	1	40
Assignment	2	30

Recommended or Required Reading

1	Jensen J.R. and Jensen R.R. (2013) Introductory Geographic Information Systems, Upper Saddle River, New Jersey: Prentice Hall.
2	Heywood, I, Cornelius, S. and Carver, S. (2011) An Introduction to Geographical Information Systems, 4th Ed, Upper Saddle River, New Jersey: Prentice Hall.
3	Longley, P.A., Goodchild, M.F, Maguire, D.J. and Rhind, D.W. (2015) Geographic Information Systems and Science, 4rd ed., Chichester: Wiley.
4	Lo, C.P. and Yeung, A.K.W. (2007) Concepts and Techniques of Geographic Information Systems, 2nd ed., Upper Saddle River, New Jersey: Prentice-Hall.
5	Chang, K.T. (2015) Introduction to Geographic Information Systems, 8th ed., Boston: McGraw-Hill.

Week	Weekly Detailed Cours	se Contents
1	Theoretical	Introduction to course: content, reason, importance, process method and needs
2	Theoretical	Introduction to spatial analysis: Deriving information from data, Identifying spatial relationships
3	Theoretical	Spatial analysis tools
4	Theoretical	Distance analysis
5	Theoretical	Density analysis
6	Theoretical	Surface Analysis
7	Theoretical	Conversion functions / Reclassify
8	Intermediate Exam	Midterm exam
9	Theoretical	Spatial statistics
10	Theoretical	Project based learning
11	Theoretical	Project based learning
12	Theoretical	Project based learning
13	Theoretical	Project based learning
14	Theoretical	Project based learning
15	Theoretical	Project based learning
16	Final Exam	Final exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	4	2	84
Lecture - Practice	14	4	2	84

Assignment	2	4	1	10
Midterm Examination	1	10	1	11
Final Examination	1	10	1	11
		To	tal Workload (Hours)	200
		[Total Workload (Hours) / 25*] = ECTS	8
*25 hour workload is accepted as 1 ECTS				

Learning Outcomes

1	To develop a deeper understanding of spatial data and principles of spatial analysis,
2	To develop a proficiency in the analysis and evaluation of spatial data,
3	To develop technical skills to structure spatial data analysis and modeling in planning,
4	To develop and improve spatial problem solving abilities through the application of GIS knowledge and spatial thinking skills.
5	To be able to produce landscape planning projects with spatial analysis techniques.

Programme Outcomes (Landscape Architecture Master)

1	e	
2	e	
3	e	
4	e	
5	e	

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	4	4	4	4	4
P3	5	5	5	5	5
P4	5	5	5	5	5
P5	1	1	1	1	1

