

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Optimization							
Course Code FEK521			Couse Level Second Cycle (Master's Degree)		Degree)			
ECTS Credit 5	S Credit 5 Workload 125 (Hours)		Theory	3	Practice	0	Laboratory	0
Objectives of the Course The concept of optimization various optimization method engineering area proceeding			Is and deal	ing particula	rly with the app	lication exa	amples in structural	L Contraction
Course Content Classical Optimization Tech to optimization,Optimization							ng techniques, Intro	oduction
Work Placement N/A								
Planned Learning Activities and Teaching Methods			Explanation	on (Presenta	tion), Discussio	on		
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)		
Midterm Examination	1	40		
Final Examination	1	60		

Recommended or Required Reading

1 Lecture Notes Supplementary Book(s): Related publications

Week	Weekly Detailed Course Contents					
1	Theoretical	Introduction to optimization. Basic descriptions and concepts.				
2	Theoretical	Design space, constraint surfaces, objective function. Statement of an optimization problem.				
3	Theoretical	General view of mathematical programming techniques.				
4	Theoretical	Classical Optimization Techniques (Calculus methods), linear programming, non linear programming, quadratic program-ming, geometric programming, dynamic programming, integer programming, network methods (CPM, PERT) etc.				
5	Theoretical	Classical Optimization Techniques: Single variable optimization techniques and its application				
6	Theoretical	Classical Optimization Techniques: Multi variable optimization techniques with no constraints and its application				
7	Theoretical	Various applications. Giving the term-assignment.				
8	Intermediate Exam	Mid-term				
9	Theoretical	Classical Optimization Techniques: Multi variable optimization techniques with equality constraints and its application				
10	Theoretical	Classical Optimization Techniques: Multi variable optimization techniques with inequality constraints and its application				
11	Theoretical	Optimization with Lagrange multipliers and its application.				
12	Theoretical	Linear Programming: Simplex Method				
13	Theoretical	Applications				
14	Theoretical	General Assesment				
15	Theoretical	General Assesment				
16	Final Exam	Final				

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	2	3	70
Individual Work	7	2	2	28
Midterm Examination	1	10	1	11

Final Examination	1	15	1	16	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS 5					
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes					
1	To have a knowledge on optimization concept and fundamental principles				
2	To be able relate engineering problems with mathematical modellings				
3	To analyze enginnering problems by using mathematical modellings				
4	To recognize informed and suitable results with optimization techniques				
5	To develope optimum solution from alternative solutions				

Programme Outcomes (Econometrics Master)

1	Understanding the concept of econometric
2	Ability to estimate econometric models
3	Test to the estimated reliability of the econometric model
4	Learning time series analysis
5	Recognition of financial assets and analysis that estimates the decisions of economic units
6	Be able to use econometric methods developed specifically for analysis of financial data
7	To be able to use computer programs needed in the field financial economics as well as information and communication technologies in advanced levels
8	Provision of the information that will be base for the econometric applications on money theories, theories of international trade and finance
9	Considering a scientific research, to be able to make a profound literature research, analysis, estimations and reporting findings in a scientific work

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	4	4	4	4
P2	2	2	3	3	3
P3	5	5	2	2	2
P4	3	3	5	5	5
P5	2	4	3	3	3
P6	4	2	2	2	2
P7	2	5	5	5	4
P8	5	3	4	4	2
P9	3	4	2	3	5