

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Advanced Maths								
Course Code		FEK525 C		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit	5	Workload	125 <i>(Hours)</i>	Theory	/	3	Practice	0	Laboratory	0
Objectives of t	he Course	The sequence Math 1001-1002 is the standard complete introduction to the concepts and methods of calculus. It is taken by all engineering students. The emphasis is on concepts, solving problems, theory and proofs. Students will develop their reading, writing and questioning skills in Mathematics.								
Course Content		To be able to	develop advaı	nced m	ath s	kills				
Work Placement		N/A								
Planned Learning Activities and Teaching Methods			Explar	natior	n (Presentat	tion), Problem	Solving			
Name of Lecturer(s)		Lec. Mesut ÇA	AKIR							

Method	Quantity	Percentage (%)
Midterm Examination	1	40
Final Examination	1	60

Recommended or Required Reading

1 Thomas Calculus (12th Edition), George B. Thomas, Maurice D. Weir, Joel Hass, 2010

Week	Weekly Detailed Course Contents					
1	Theoretical	Infinite series; Convergence tests for positive series; Power series, Taylor and Maclaurin series				
2	Theoretical	Quadratic forms(Conic Sections)				
3	Theoretical	Vectors and coordinate geometry in three dimensional space Analytic geometry in three dimensions, Plane, lines, and quadratic surfaces				
4	Theoretical	Functions of several variables; Limits and continuity				
5	Theoretical	Partial derivatives; Higher-order derivatives, The chain rule				
6	Theoretical	Partial derivatives; Higher-order derivatives, The chain rule				
7	Theoretical	Linear approximation; Gradients and directional derivatives, Implicit functions				
8	Intermediate Exam	Mid-term				
9	Theoretical	Extreme values; Extreme values of functions defined on restricted domains				
10	Theoretical	Lagrange multipliers; Multiple integration; Double integrals, iteration of double integrals in Cartesian- Coordinates				
11	Theoretical	Surface area using by double integrals; Double integrals in Polar Coordinates				
12	Theoretical	Vector and scalar fields; Line integrals				
13	Theoretical	Conservative fields				
14	Theoretical	Surface integrals; Green s theorem, divergence theorem, and Stokes s theorem.				
15	Theoretical	Surface integrals; Green s theorem, divergence theorem, and Stokes s theorem.				
16	Final Exam	Final				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	2	3	70	
Individual Work	7	2	2	28	
Midterm Examination	1	10	1	11	
Final Examination	1	15	1	16	
	125				
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 ECTS					

Learr	ning Outcomes
1	Define the sequence of partial sum for an infinite series and relate the convergence of this sequence to the convergence of the series. Then find or estimate the sum.
2	Find the interval and radius of convergence for a given power series.
3	Understand and identify vectors in the plane and in the three dimensional space.
4	Find the total differential of a function of several variables and use it to approximate incremental change in the function.
5	Do simple manipulations involving gradient, divergence, and curl, and understand their geometrical/physical meaning

Programme Outcomes (Econometrics Master)

•	
1	Understanding the concept of econometric
2	Ability to estimate econometric models
3	Test to the estimated reliability of the econometric model
4	Learning time series analysis
5	Recognition of financial assets and analysis that estimates the decisions of economic units
6	Be able to use econometric methods developed specifically for analysis of financial data
7	To be able to use computer programs needed in the field financial economics as well as information and communication technologies in advanced levels
8	Provision of the information that will be base for the econometric applications on money theories, theories of international trade and finance
9	Considering a scientific research, to be able to make a profound literature research, analysis, estimations and reporting findings in a scientific work

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	2	4	3	3
P2	3	3	3	4	4
P3	2	2	3	3	3
P4	5	3	3	3	4
P5	3	2	4	4	3
P6	2	5	2	2	2
P7	5	3	3	5	2
P8	2	2	4	2	3
P9	3	3	3	3	4