

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Artificial Neural Networks									
Course Code		FEK526		Couse Level		Second Cycle (Master's Degree)					
ECTS Credit	5	Workload	125 (Hours)	Theory	/	3	Practice 0 Laboratory			0	
Objectives of the Course		To understand and implement articial neural networks in real life									
Course Content		This course presents an overview of neural networks and machine learning techniques and the implementation in real life.						chniques and the	ir		
Work Placement		N/A									
Planned Learning Activities and Teaching Methods			Explan	ation	(Presentat	tion), Problem	Solving				
Name of Lecturer(s)											

Assessment Methods and Criteria							
Method	Quantity	Percentage (%)					
Midterm Examination	1	40					
Final Examination	1	60					

Recommended or Required Reading

1 Introduction to Machine Learning, E. Alpaydin, MIT Press, 2009

Week	Weekly Detailed Cour	se Contents
1	Theoretical	Introduction
2	Theoretical	Supervised learning
3	Theoretical	Unsupervised learning
4	Theoretical	Semisupervised learning
5	Theoretical	Decision Trees, Ripper
6	Theoretical	Bayesian Algorithms
7	Theoretical	Bayesian Algorithms
8	Intermediate Exam	Mid-term Mid-term
9	Theoretical	Clustering
10	Theoretical	Support Vector Machines
11	Theoretical	K-Means
12	Theoretical	Multilayer Percoptrons
13	Theoretical	Neural Networks
14	Theoretical	Self Organizing Maps
15	Theoretical	MATLAB
16	Final Exam	Final

Workload Calculation						
Activity	Quantity	Preparation	Duration		Total Workload	
Lecture - Theory	14	2	3		70	
Individual Work	7	2	2		28	
Midterm Examination	1	10	1		11	
Final Examination	1	15	1		16	
	ırs)	125				
	TS	5				
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes

- 1 Explore the fundamental principles of machine learning techniques
- 2 Assess the basic concepts of supervised and unsupervised algorithms
- 3 Convert and normalize collected information into datasets appropriate for analysis

- Implement machine learning techniques over prepared samples
 Analyse the results obtained from the executed experiments
- Programme Outcomes (Econometrics Master) Understanding the concept of econometric 2 Ability to estimate econometric models Test to the estimated reliability of the econometric model 3 4 Learning time series analysis 5 Recognition of financial assets and analysis that estimates the decisions of economic units 6 Be able to use econometric methods developed specifically for analysis of financial data To be able to use computer programs needed in the field financial economics as well as information and communication 7 technologies in advanced levels Provision of the information that will be base for the econometric applications on money theories, theories of international 8 trade and finance Considering a scientific research, to be able to make a profound literature research, analysis, estimations and reporting findings 9 in a scientific work

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	3	4	3	3	3
P2	3	2	4	3	3
P3	3	2	3	3	4
P4	3	3	3	4	2
P5	4	4	2	2	3
P6	3	3	5	5	2
P7	5	2	3	3	3
P8	3	3	4	3	4
P9	2	4	3	4	2

