

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Exercise Met	abolism							
Course Code	TIB536	TIB536		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 5	Workload	125 (Hours)	Theory	,	2	Practice	0	Laboratory	0
Objectives of the Course									
Course Content									
Work Placement N/A									
Planned Learning Activities and Teaching Methods Explanation (Presentation)									
Name of Lecturer(s)									

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	40			
Final Examination	1	60			

Recommended or Required Reading

1 2. Exercise Metabolism, Hardgreeves and Spriet, Library of Congress (2005)

Week	Weekly Detailed Cour	Course Contents					
1	Theoretical	Introduction to the exercise metabolism					
2	Theoretical	Anaerobic metabolism during exercise					
3	Theoretical	The carbohydrate metabolism during exercise					
4	Theoretical	The hepatic metabolism during exercise					
5	Theoretical	The lactate transport in skeletal muscle during exrecise					
6	Theoretical	The lipid mobilization in fat during exercise					
7	Theoretical	The lipid metabolism in skeletal muscle during exercise					
8	Theoretical	The effect of exercise to protein and aminoasid metabolsim in skeletal muscle					
9	Intermediate Exam	Midterm Exam					
10	Theoretical	The metabolic factors in fatigue					
11	Theoretical	Fatigue during static and dynamic exercise					
12	Theoretical	The effect of exercise on substrate turnover and oxidation					
13	Theoretical	Lipolysis during exercise					
14	Theoretical	Lactate transport system					
15	Final Exam	Final Exam					

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	13	7	2	117		
Midterm Examination	1	2	2	4		
Final Examination	1	2	2	4		
Total Workload (Hours)						
[Total Workload (Hours) / 25*] = ECTS						
*25 hour workload is accepted as 1 ECTS						

Learni	Learning Outcomes					
1						
2						
3						
4						

Prog	Programme Outcomes (Medical Biology Master)					
1	To acquire fundamental knowledge on medical biology field					
2	To gain expertise on molecular biology techniques					
3	To utilize molecular biology techniques					
4	To be able to construct and conduct a research project					
5	To be able to follow and interpret scientific advancements					

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	5	2	3
P2	1	1	1	1	1
P3	1	1	1	1	1
P4	1	1	1	1	2
P5	3	3	3	5	3

