

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Gene Transfer Vectors and Vector Designing								
Course Code TIB629			Couse L	_evel	Third Cycle (Doctorate Degree)			
ECTS Credit 6	Workload	151 (Hours)	Theory	2	Practice	2	Laboratory	0
Objectives of the Course								
Course Content								
Work Placement N/A								
Planned Learning Activities and Teaching Methods Explanation (Presentation)								
Name of Lecturer(s)	Prof. Abdullal	n YALÇIN						

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	40			
Final Examination	1	60			

Recommended or Required Reading

- 1. Molecular cloning: A laboratory manual Michael Green and Joseph Sambrook Cold Spring Harbor Laboratory Press (Fourth edition) 2012
- 2. Minicircle and miniplasmid DNA vectors: The future of non-viral and viral gene transfer Martin Schleef Wiley Blackwell 2013

Week	Weekly Detailed Cour	/eekly Detailed Course Contents					
1	Theoretical	General overview of gene transfer vectors					
2	Theoretical	Analytical tools of vector design					
3	Theoretical	Bioinformatic tools of vector design					
4	Theoretical	Plasmid vector replication					
5	Theoretical	Antibiyotic selection on plasmid vectors					
6	Theoretical	Transient and stable expression systems I					
7	Theoretical	Transient and stable expression systems II					
8	Intermediate Exam	Midterm Exam					
9	Theoretical	Vector amplification applications					
10	Theoretical	Gene transfer by non-viral vectors					
11	Theoretical	Gene transfer by viral vectors					
12	Theoretical	Selection by Operons and repressors					
13	Theoretical	Selection by RNA-RNA interactions					
14	Theoretical	Vector patents					
15	Final Exam	Final Exam					

Workload Calculation						
Activity	Quantity		Preparation	Duration		Total Workload
Lecture - Theory	13		4	2		78
Lecture - Practice	13		3	2		65
Midterm Examination	1		2	2		4
Final Examination	1	, I	2	2		4
Total Workload (Hours)						151
[Total Workload (Hours) / 25*] = ECTS						6
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes						
1						
2						

3	
4	
5	

Progr	mme Outcomes (Medical Biology Doctorate)
1	To acquire fundamental knowledge on medical biology field
2	To gain expertise on molecular biology techniques
3	To utilize molecular biology techniques
4	To be able to construct and conduct a research project
5	To be able to follow and interpret scientific advancements

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	3	2	2
P2	2	2	4	4	5
P3	2	2	3	3	3
P4	3	3	3	2	3
P5	3	3	2	2	3

