

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Principles of F	Poulation Gene	etics					
Course Code	BİO642		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 7	Workload	179 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course The aim of this course is to teach genetic diversity in population evolutionary forces on it, molecular population genetics, quant				in populations a etics, quantitativ	and the influtive genetics	lence of various and ecological ge	netics.	
	Diversity in po software	pulations, nat	ural selectio	n and gene	etic drift, populat	tion genetic	s analyses using o	compute
Work Placement	N/A							
Planned Learning Activities and Teaching Methods		Explanation	n (Presenta	tion), Individual	Study			
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	60	

Recommended or Required Reading

1	Hartl DL & Clarck AG (1988). Principles of Population Genetics. Sinauer Associates, Inc. Sunderland, Massachusetts.
2	Freeman S & Herron JC (2009). Evolutionary analysis. Palme Yayınevi, Ankara. (Çeviri)

Week	Weekly Detailed Cours	ourse Contents				
2	Theoretical	Darwinian Evolution in Mendelian Populations				
3	Theoretical	Diversity in populations and its measurments				
4	Theoretical	Hardy-Weinberg equilibrium				
5	Theoretical	Random Genetic Drift				
6	Theoretical	Mutation and Neutral Teory				
7	Theoretical	Natural Selection				
8	Intermediate Exam	Midterm exam				
9	Theoretical	Inbreeding and ather forms of Nonrandom mating				
10	Theoretical	Population subdivisions and Migrations				
11	Theoretical	Molecular Population genetics				
12	Theoretical	Evolutionary Genetics of Quantitative Characters				
13	Theoretical	Ecological genetics and Speciation				
14	Theoretical	Population genetic analyses using computer softwares				
15	Theoretical	Population genetic analyses using computer softwares				
16	Theoretical	Population genetic analyses using computer softwares				
17	Final Exam	Final exam				

Workload Calculation

Activity	Quantity	Preparation Duration		Total Workload
Lecture - Theory	15	3	3	90
Assignment	6	2	3	30
Reading	8	2	1	24
Midterm Examination	1	15	2	17
Final Examination	1	15	3	18
	179			
[Total Workload (Hours) / 25*] = ECTS				
*25 hour workload is accepted as 1 ECTS				

Learn	Learning Outcomes					
1	To be able to understand the reasons of the diversity in populations					
2	To be able to learn the Hardy weinberg equilibrium					
3	To be able to make the population genetics analyses by using computer softwares					
4						
5						

Programme Outcomes (Biology Doctorate) To have enough scientific background knowledge towards a specific study and research area 1 2 To have an ability to identify, evaluate and develop a solution for a problem on biological aspects To be able to evaluate scientific observations and results of experiments using statistical analysis methods 3 To have basic skills in areas related to field of biological studies 4 To have the ability to develop cooperation with different disciplines with the high level of social communication required for 5 studies To have knowledge of technology and use of methods and means used in biological researches 6 7 To have an ethical understanding which will be a guide for their investigations and publications For PhD; to have European Language Portfolio C1 general level language skill 8 To be able to present and discuss own research results in accordance with scientific discipline using technological tools in 9 scientific research environments 10 To be able to detect and evaluate economic and social impacts of an own original research results 11 To be equipped with ability of carrying out independent study in biological field To be able to publish at least one an international/national peer reviewed scientific paper and/or produce or interpret an 12 original work related to biology in order to expand the frontiers of knowledge To be able to develop new approaches or adaptations to be used in solving scientific and biological problems 13 To be able to develop new understanding and approaches in order to explain a new phenomenon or a biological event under 14 investigation To have abilities and experience to create new search area through inspiration gained from subject searched 15

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5				
P2		5			
P3			5		
P4				2	2

