

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Algebra I								
Course Code	MTK503		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8 Workload 200 (Hours)		Theory	3	Practice	0	Laboratory	0	
Objectives of the Course	This course gi	ves the funda	mental cor	ncepts of gro	ups.			
Course Content Semigroups, monoids and groups, quotient groups, direct products and direct products and theorems and their application			t groups, is I direct sur	somorphism t	heorems, sym	metric group	os, alternating and	dihedral
Work Placement N/A								
Planned Learning Activities and Teaching Methods Explanation (Presentation), Individual Study, Problem Solving								
Name of Lecturer(s) Prof. Hülya İNCEBOZ, Prof. S			Semra Do	OĞRUÖZ				

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	30			
Final Examination	1	50			
Assignment	1	20			

Reco	mmended or Required Reading
1	Algebra, T.W.Hungerfort
2	Contemporary Abstract Algebra, J.A.Gallian
3	Basic Algebra I-II, N. Jacobson
4	Basic Abstract Algebra, P.B. Bhattacharya, S.K.Jain, S.R. Nagpaul, Cambridge University Pres
5	Fundamentals of Abstract Algebra, D.S.Malik, John M.Mordeson, M.K.Sen, , The McGraw-Hill Companies

Week	Weekly Detailed Cour	d Course Contents				
1	Theoretical	Semigroups, monoids and groups				
2	Theoretical	Homorphisms and subgroups				
3	Theoretical	Cyclic groups				
4	Theoretical	Coset and counting				
5	Theoretical	Normal subgroups, quotient groups				
6	Theoretical	Normal subgroups, quotient groups				
7	Theoretical	Isomorphism theorems				
8	Theoretical	Symmetric groups				
9	Theoretical	Alternating and dihedral groups				
10	Intermediate Exam	Midterm				
11	Theoretical	Direct products and direct sums				
12	Theoretical	Free abelian groups				
13	Theoretical	The action of group on a set				
14	Theoretical	The Sylow Theorems				
15	Theoretical	Some aplications of the Sylow Theorems				
16	Final Exam	Final Exam				

Workload Calculation							
Activity	Quantity	Preparation	Duration	Total Workload			
Lecture - Theory	14	3	3	84			
Assignment	1	20	2	22			
Midterm Examination	1	40	2	42			

Final Examination	1		50	2	52
	Total Workload (Hours)				200
[Total Workload (Hours) / 25*] = ECTS				8	
*25 hour workload is accepted as 1 ECTS					

Learn	ing Outcomes
1	To be able to give fundamental properties of group theory
2	To be able to relate group theory with other fields of algebra
3	To be able to develop some theoretical approach on group theory
4	To be able to develop individual works on group theory
5	To be able to relate group theory with some other fields except algebra.

Progr	amme Outcomes (Mathematics Master)
1	To be able to have an adequate theoretical and practical domain knowledge.
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.
3	To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.
4	To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.
5	To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.
6	To be able to conduct a math related specialistic study independently.
7	To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.
8	To be able to lead in situations that require solving problems related to the mathematics.
9	To be able to criticize his/her knowledge and skills acquired in the field mathematics.
10	To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.
11	To be able to communicate both orally and written in a foreign language.
12	To be able to use computer hardware and information technologies with software required by Mathematics.
13	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.
14	To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.
15	To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	3	4	5	5
P2	5	5	4	4	5
P3	4	4	5	5	4
P4	5	4	5	5	5
P5	4	5	5	5	4
P6	3	3	3	3	3
P7	2	3	4	5	3
P11					4
P15	2	4	4	5	5

