

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Algebra II								
Course Code	MTK504		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8	Workload 200	0 (Hours) The	ory	3	Practice	0	Laboratory	0
Objectives of the Course	This course gives	the fundament	al concepts	of ring	S.			
Course Content	Rings, homomorp in commutative rir factorization in po extension.	ngs, division ring	gs and local	ization	, rings of polin	omials and fo	ormal power series	S
Work Placement N/A								
Planned Learning Activities and Teaching Methods			anation (Pre	sentat	ion), Individua	l Study, Prob	lem Solving	
Name of Lecturer(s)								

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	30			
Final Examination	1	50			
Assignment	1	20			

Reco	mmended or Required Reading
1	Algebra, T.W.Hungerfort
2	Contemporary Abstract Algebra, J.A.Gallian
3	Basic Algebra I-II, N. Jacobson
4	Basic Abstract Algebra, P.B. Bhattacharya, S.K.Jain, S.R. Nagpaul, Cambridge University Pres
5	Fundamentals of Abstract Algebra, D.S.Malik, John M.Mordeson, M.K.Sen, The McGraw-Hill Companies

Week	Weekly Detailed Cours	se Contents				
1	Theoretical	Rings				
2	Theoretical	Homomorphisms of rings,ideals				
3	Theoretical	Isomorphism theorems				
4	Theoretical	Prime and maximal ideals				
5	Theoretical	Prime and maximal ideals				
6	Theoretical	Factorization in commutative rings				
7	Theoretical	PID,UFD, Dedekind domains				
8	Theoretical	Division rings and localization				
9	Intermediate Exam	Midterm				
10	Theoretical	Rings of polinomials and formal power series				
11	Theoretical	Factorization in polynomial rings				
12	Theoretical	Modules				
13	Theoretical	Homomorphism and exact sequences				
14	Theoretical	Vector spaces				
15	Theoretical	Field extension				
16	Final Exam	Final Exam				

Workload Calculation							
Activity	Quantity	Preparation	Duration	Total Workload			
Lecture - Theory	14	3	3	84			
Assignment	1	20	2	22			
Midterm Examination	1	40	2	42			

Final Examination	1		50	2	52
	Total Workload (Hours) 200				200
[Total Workload (Hours) / 25*] = ECTS				8	
*25 hour workload is accepted as 1 ECTS					

Learn	ing Outcomes
1	To be able to give fundamental properties of ring theory
2	To be able to relate ring theory with other fields of algebra
3	To be able to develop some theoretical approach on ring theory
4	To be able to develop individual works on ring theory
5	To be able to relate ring theory with some other fields except algebra

Progr	amme Outcomes (Mathematics Master)				
1	To be able to have an adequate theoretical and practical domain knowledge.				
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.				
3	To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.				
4	To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.				
5	To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.				
6	To be able to conduct a math related specialistic study independently.				
7	To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.				
8	To be able to lead in situations that require solving problems related to the mathematics.				
9	To be able to criticize his/her knowledge and skills acquired in the field mathematics.				
10	To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.				
11	To be able to communicate both orally and written in a foreign language.				
12	To be able to use computer hardware and information technologies with software required by Mathematics.				
13	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.				
14	To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.				
15	To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.				

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	3	4	5	5
P2	5	5	4	4	5
P3	4	4	5	5	4
P4	5	4	5	5	5
P5	4	5	5	5	4
P6	3	3	3	3	3
P7	2	3	4	5	3
P11					4
P15	2	4	4	5	5

