

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Introduction to	Module Theo	ory					
Course Code		MTK510		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	7	Workload	175 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of t	the Course	This course gi	ves the funda	mental co	oncepts of mo	dules			
Course Content		To give concept of modules, submodules, sum of submodules and intersection of submodules, to define the generators and cogenerators of modules and to give properties of them, to study constraction of product and coproduct, to introduce small submodule, large submodule and complement submodules and studying related properties, to define injective and projective modules and give some basic facts, to study injective hull and projective covers.							
Work Placement		N/A							
Planned Learning Activities		and Teaching	Methods	Explana	tion (Presenta	tion), Individua	l Study		
Name of Lecturer(s)									

Assessment Methods and Criteria

Midterm Examination1Final Examination1Assignment1	Percentage (%)
Final Examination 1	30
Assignment 1	50
Assignment	20

Recommended or Required Reading

1	Moduln und Ringe, F. Kasch, B.G. Teubner Stuttgart 1977
2	Modules and Rings, F. Kasch, Translated by D.A.R. Wallace, 1982
3	Rings and Categories of Modules, F.W. Anderson- K.R. Fuller, Springer Verlag 1974

Week	Weekly Detailed Course	Irse Contents					
1	Theoretical	Modules, submodules and ideals					
2	Theoretical	Intersection and sum of submodules, internal direct sums					
3	Theoretical	Factor modules and factor rings, ring homomorphisms					
4	Theoretical	Generators and cogenerators, factorization of homomorphisms					
5	Theoretical	The theorem of Joran-Hölder-Schreier, the endomorphism ring of modules					
6	Theoretical	Dual modules, exact sequences					
7	Theoretical	Construction of Products and Coproducts					
8	Intermediate Exam	Midterm exam					
9	Theoretical	Homomorphisms of direct products and coproducts, free modules					
10	Theoretical	Free and divisible abelian groups					
11	Theoretical	Large and small modules					
12	Theoretical	Complements					
13	Theoretical	Definition of injective and projective modules and simple corollaries					
14	Theoretical	Injective hulls and projective covers					
15	Theoretical	Baer's Criterion, properties of generators and cogenerators					
16	Final Exam	Final Exam					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	3	3	84
Assignment	1	10	2	12
Midterm Examination	1	32	2	34

Course	Infor	mation	Form
	mion		i onn

Final Examination	1	43	2	45	
	Total Workload (Hours)			175	
		[Total Workload (Hours) / 25*] = ECTS	7	
*25 hour workload is accepted as 1 ECTS					

Learn	ing Outcomes
1	To be able to give fundamental properties of module theory
2	To be able to relate module theory with other fields of algebra
3	To be able to develop some theoretical approach on module theory
4	To be able to develop individual work on module theory
5	To be able to relate module theory with some other fields except algebra

Programme Outcomes (Mathematics Master)

•	
1	To be able to have an adequate theoretical and practical domain knowledge.
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.
3	To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.
4	To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.
5	To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.
6	To be able to conduct a math related specialistic study independently.
7	To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.
8	To be able to lead in situations that require solving problems related to the mathematics.
9	To be able to criticize his/her knowledge and skills acquired in the field mathematics.
10	To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.
11	To be able to communicate both orally and written in a foreign language.
12	To be able to use computer hardware and information technologies with software required by Mathematics.
13	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.
14	To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.
15	To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	4	4	4	5
P2	5	5	4	4	5
P3		4	4	4	4
P4	4	4	5	4	5
P5	4	3	4	5	4
P6	3	3	3	5	3
P7	2	3	4	5	3
P11	4	4	4	4	4
P15	2	4	4	5	5