

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Number Theory											
Course Code		MTK513		Couse Level		Second Cycle (Master's Degree)					
ECTS Credit 7		Workload	175 (Hours)	Theory	/	3	Practi	ice	0	Laboratory	0
Objectives of the	he Course	This course gives the fundamental concepts of algebraic numbers.									
Course Content		residues,algel	braic ıntegers, als, units and f prime ıdeals	ıntegra estimat in galoi	al bas ions f s exte	is, discrimi ort he disc	nant, tl riminai	he decoi nt, ramif	mposition of ication, disci	residue classes, of ideals, the normal riminant and differ belian extensions,	and ent, the
Work Placement N/A											
Planned Learning Activities and Teaching Methods			Explar	ation	(Presenta	tion), Ir	ndividua	l Study, Pro	blem Solving		
Name of Lecturer(s)											

Assessment Methods and Criteria							
Method	Quantity	Percentage (%)					
Midterm Examination	1	30					
Final Examination	1	50					
Assignment	1	20					

Recommended or Required Reading						
1	Algebraic Numbers, P. Ribenboim, Wiley-Interscience,1972					
2	Number Theory, Z. I. Borevich and I.R. Shafarevich, Academic Press, 1967					

Week	Weekly Detailed Course Contents						
1	Theoretical	Principal ideal domain and unique factorization domains					
2	Theoretical	Fields					
3	Theoretical	Residue classes					
4	Theoretical	Quadratic residues					
5	Theoretical	Algebraic integers, integral basis					
6	Theoretical	Discriminant					
7	Theoretical	The decomposition of ideals					
8	Intermediate Exam	Midterm					
9	Theoretical	The norm and classes of ideals					
10	Theoretical	Units and estimations for the discriminant					
11	Theoretical	Ramification, discriminant and different					
12	Theoretical	Ramification, discriminant and different					
13	Theoretical	The ramification of prime ideals in Galois Extension					
14	Theoretical	The fundamental theorem of abelian extensions					
15	Theoretical	Miscellaneous numerical examples					
16	Final Exam	Final Exam					

Workload Calculation						
Activity	Quantity	Preparation		Duration	Total Workload	
Lecture - Theory	14	14 3		3	84	
Assignment	1		10	2	12	
Midterm Examination	1		32	2	34	
Final Examination	1		43	2	45	
Total Workload (Hours)						
[Total Workload (Hours) / 25*] = ECTS						
*25 hour workload is accepted as 1 ECTS						

Learn	Learning Outcomes						
1	To be able to give fundamental properties of number theory						
2	To be able to relate number theory with other fields of algebra						
3	To be able to develop some theoretical approach on number theory						
4	To be able to develop individual work on number theory						
5	To be able to relate number theory with some other fields except algebra						

Progra	amme Outcomes (Mathematics Master)
1	To be able to have an adequate theoretical and practical domain knowledge.
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.
3	To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.
4	To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.
5	To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.
6	To be able to conduct a math related specialistic study independently.
7	To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.
8	To be able to lead in situations that require solving problems related to the mathematics.
9	To be able to criticize his/her knowledge and skills acquired in the field mathematics.
10	To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.
11	To be able to communicate both orally and written in a foreign language.
12	To be able to use computer hardware and information technologies with software required by Mathematics.
13	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.
14	To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.
15	To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5		
P1	5	3	4	5	5		
P2	5	5	4	4	5		
P3	4	4	5	5	4		
P4	5	4	5	5	5		
P5	4	5	5	5	4		
P6	3	3	3	3	3		
P7	2	3	4	5	3		
P11					4		
P15	2	4	4	5	5		

