

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Non- Euclidean Geometry								
Course Code		MTK518		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit	8	Workload	200 (Hours)	Theory	/	3	Practice	0	Laboratory	0
Objectives of the Course		Our aim is to give some definitions on non Euclidean geometry.								
Course Content		Euclid, Saccheri ,Lambert ,Bolyai ,Rie Euclidian models.			Riema	ann, eliptic	geometry, hyp	erbolic geo	metry, cirles and tr	iangles,
Work Placement		N/A								
Planned Learning Activities and Teaching Methods		Explan	ation	(Presentat	tion), Discussi	on, Individua	al Study, Problem	Solving		
Name of Lecturer(s)										

Assessment Methods and Criteria							
Method	Quantity	Percentage (%)					
Midterm Examination	1	30					
Final Examination	1	50					
Assignment	1	20					

Recommended or Required Reading

1 Coxeter, H.S. Non- Euclidean Ceometry Washington. D.C.20036

Week	Weekly Detailed Cour	se Contents				
1	Theoretical	Euclid				
2	Theoretical	Saccheri ,Lambert ,Bolyai ,Riemann				
	Preparation Work	Solve the problems and examples				
3	Theoretical	Definitions and axioms				
	Preparation Work	Solve the problems and examples				
4	Theoretical	Models				
	Preparation Work	Solve the problems and examples				
5	Theoretical	Elliptic geometry in one one dimension				
	Preparation Work	Solve the problems and examples				
6	Theoretical	Elliptic geometry in two dimension				
	Preparation Work	Solve the problems and examples				
9	Theoretical	Elliptic geometry in three dimension				
	Preparation Work	Solve the problems and examples				
10	Theoretical	Solve the problems				
	Preparation Work	Solve the problems and examples				
11	Intermediate Exam	Midterm				
12	Theoretical	Circles and triangles				
	Preparation Work	Solve the problems and examples				
13	Preparation Work	Solve the problems and examples				
14	Theoretical	Euclidean models				
	Preparation Work	Solve the problems and examples				
15	Theoretical	Solve the problems				
16	Final Exam	Final exam				

Workload Calculation							
Activity	Quantity	Preparation	Duration	Total Workload			
Lecture - Theory	14	3	3	84			
Assignment	1	20	2	22			
Midterm Examination	1	40	2	42			

Final Examination	1	50	2	52
		To	tal Workload (Hours)	200
		[Total Workload (Hours) / 25*] = ECTS	8
*25 hour workload is accepted as 1 ECTS				

Learn	Learning Outcomes							
1	To be able to recognize histories of mathematician							
2	To be able to comprehend elliptic geometry							
3	To be able to comprehend non-Euclidean geometry							
4	To be able to comprehend hyperbolic geometry							
5	To be able to gain the skill of interpreting some interrelations among these concepts							

Progr	amme Outcomes (Mathematics Master)						
1	To be able to have an adequate theoretical and practical domain knowledge.						
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.						
3	To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.						
4	To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.						
5	To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.						
6	To be able to conduct a math related specialistic study independently.						
7	To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.						
8	To be able to lead in situations that require solving problems related to the mathematics.						
9	To be able to criticize his/her knowledge and skills acquired in the field mathematics.						
10	To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.						
11	To be able to communicate both orally and written in a foreign language.						
12	To be able to use computer hardware and information technologies with software required by Mathematics.						
13	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.						
14	To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.						
15	To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.						

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	2	4	2	2	2
P2	4	4	4	4	4
P3	5	5	5	5	5
P4	1	1	1	1	1
P6	1	1	1	1	1
P8		3			
P9	3		3	3	3
P15	4	4	4	4	4

