

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Mathematical Statistics II								
Course Code		MTK520		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit	8	Workload	200 (Hours)	Theory		3	Practice	0	Laboratory	0
Objectives of the Course		This course introdues fundamental probablitiy and mathematical statistical theory.								
Course Content		Discrete function of probability and function of distribution, Continuous function of probability and function of distribution, Expected value ,mean and variance, Functions of moment generation and functions of characteristic, Estimation theory and properties.								
Work Placement		N/A								
Planned Learning Activities		and Teaching	Methods	Explana	tion	(Presentat	tion), Discussi	on, Individua	al Study, Problem	Solving
Name of Lecturer(s)										

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	30	
Final Examination	1	50	
Assignment	1	20	

Recommended or Required Reading

1	İnal C. Olasılıksal ve Matematiksel İstatistik (Probabilistic and Mathematical Statistics), Hacettepe Üniv. Fen Fak yayınları No: 16, 1982.
2	Kendall,M, Stuart,A.,Ord J.KThe Advanced theory of Statistics. Charles griffin com. London 1983.
3	Alexander, W.H. –Elements of Mathematical Statistics John Wiley and Sons, NewYork, 1961.
4	Mood, A.M., Graybill, F.A. Probabilitiy and Statistical Applications McGraw-Hill Book Com. NewYork, 1963.

Week	Weekly Detailed Cours	Iy Detailed Course Contents				
1	Theoretical	Permutation and combination				
2	Theoretical	Probability				
3	Theoretical	Discrete function of probability and function of distribution				
4	Theoretical	Continuous function of probability and function of distribution				
5	Theoretical	Expected value ,mean and variance				
6	Theoretical	Transform of veriable at function of probability				
7	Theoretical	Functions of moment generation and functions of characteristic				
8	Theoretical	Estimation theory				
9	Theoretical	Property of estimations				
10	Intermediate Exam	Midterm Exam				
11	Theoretical	Least squares method				
12	Theoretical	Least squares method				
13	Theoretical	Maximum likelihood method				
14	Theoretical	Bayesian estimation method				
15	Theoretical	Moments estimation method				
16	Final Exam	FINAL EXAM				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	3	3	84	
Assignment	1	20	2	22	
Midterm Examination	1	40	2	42	

				Course Information Fo
Final Examination	1	50	2	52
		Тс	tal Workload (Hours)	200
		[Total Workload (Hours) / 25*] = ECTS	8
*25 hour workload is accepted as 1 ECTS				

Learn	ing Outcomes
1	Discrete function of probability and function of distribution.
2	Continuous function of probability and function of distribution .
3	Expected value ,mean and variance, Functions of moment generation and functions of characteristic
4	Estimation theory and properties.
5	To be able to gain the skill of interpreting some interrelations among these concepts

Programme Outcomes (Mathematics Master)

1	To be able to have an adequate theoretical and practical domain knowledge.
2	To be able to comprehend the interdisciplinary interaction associated with Mathematics.
3	To be able to use theoretical and practical domain knowledge gained in the field of Mathematics.
4	To be able to interpret knowledge from different disciplines integrating knowledge in the field of mathematics and produce new information.
5	To be able to define, analyse, model and to solve the problems by scientific methods in Mathematics.
6	To be able to conduct a math related specialistic study independently.
7	To be able to develop new strategic approaches to solve problems occurred in unforeseen and complex math-related applications by taking responsibility.
8	To be able to lead in situations that require solving problems related to the mathematics.
9	To be able to criticize his/her knowledge and skills acquired in the field mathematics.
10	To be able to transfer his/her ideas and suggestions for solutions to problems by supporting quantitative or qualitative data verbally and in writing.
11	To be able to communicate both orally and written in a foreign language.
12	To be able to use computer hardware and information technologies with software required by Mathematics.
13	To be able to contribute to the solution of the social, scientific, cultural and ethical problems related to the Mathematics, and being able to support the development of social, scientific, cultural and ethical values.
14	To be able to develop mathematics-related strategies, policies and operational plans, and to evaluate the results obtained within the framework of quality processes.
15	To be able to use his/her knowledge in the field of mathematics and practical problem-solving skills in interdisciplinary studies.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	3	4	4	4	4
P2	3	4	4		
P3	3	4	4	4	4
P4	3	4	4		
P5		4	4		
P7		4	4		
P10			4		
P12	3			5	4
P14			4		
P15	4	4	4	3	4